计算机科学 ›› 2023, Vol. 50 ›› Issue (8): 37-44.doi: 10.11896/jsjkx.220600204

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于注意力机制的多模态在线评论有用性预测研究

张逸安1, 杨颖2, 任刚2, 王刚2   

  1. 1 南京大学信息管理学院 南京 210023
    2 合肥工业大学管理学院 合肥 230009
  • 收稿日期:2022-06-22 修回日期:2022-11-04 出版日期:2023-08-15 发布日期:2023-08-02
  • 通讯作者: 王刚(wgedison@hfut.edu.cn)
  • 作者简介:(yianzh1004@163.com)
  • 基金资助:
    国家自然科学基金(72071062,71471054,72071061)

Study on Multimodal Online Reviews Helpfulness Prediction Based on Attention Mechanism

ZHANG Yian1, YANG Ying2, REN Gang2, WANG Gang2   

  1. 1 School of Information Management,Nanjing University,Nanjing 210023,China
    2 School of Management,Hefei University of Technology,Hefei 230009,China
  • Received:2022-06-22 Revised:2022-11-04 Online:2023-08-15 Published:2023-08-02
  • About author:ZHANG Yian,born in 1999,postgra-duate.His main research interests include deep learning and user information behavior.
    WANG Gang,born in 1980,professor,Ph.D supervisor,is a member of China Computer Federation.His main research interests include information systems and machine learning.
  • Supported by:
    National Natural Science Foundation of China(72071062,71471054,72071061).

摘要: 在电子商务时代,在线评论被视为一类重要的商品评价,深刻影响着消费者的决策过程。但是指数级增长的评论数量和非结构化的评论数据给评论有用性预测模型的特征选择和精确度提升带来了挑战。此外,目前的研究主要集中于浅层特征和评论文本的特征提取,往往忽略了评论照片所包含的图像信息,同时评论文本、照片、浅层特征这些多模态的信息需要应用多模态融合方法进行信息的提炼融合。基于此,文中将评论照片和评论文本作为影响在线评论有用性的潜在特征,并根据KAM知识采纳理论设计浅层特征集合。对于3种模态的数据,提出了一种基于协同注意力机制的三模态评论有用性预测模型(TMCAM),用于实现跨模态信息的交互和融合。实验结果检验了TMCAM模型的优越性能,证明了图像和文本信息的互补能够达到比单一模态信息更好的效果;浅层特征能够辅助预测评论有用性;相比简单的模态特征拼接,利用协同注意力机制进行跨模态信息交互有助于提升对评论有用性的感知。

关键词: 评论有用性, 协同注意力机制, 多模态融合, 自然语言处理, 深度学习

Abstract: In the e-commerce era,online reviews are regarded as important product evaluations,which profoundly influence consumers' decision-making process.However,the exponentially increasing number of reviews and unstructured review data pose challenges to feature selection and accuracy improvement of review helpfulness prediction.In addition,current research mainly focuses on shallow features and feature extraction of review texts,the image information contained in review photos is often ignored.Besides,multi-modal information such as review text,photos,and shallow features needs to be refined and fused by app-lying multi-modal fusion methods.Based on these,this paper regards review photos and review text as a latent feature affecting the helpfulness of online reviews,and designs a shallow feature set according to the KAM knowledge adoption theory.For the data of three modalities,a deep prediction model,i.e.,three-modal review helpfulness prediction based on co-attention mechanism(TMCAM) is proposed,which can achieve the interaction and fusion of cross-modal information.The superior performance of the TMCAM model is tested through experiments,and it is proved that the complementation of image and text information can achieve better results than single modal information.Besides,shallow features can help predict the reviews helpfulness.Moreover,compared with simple modal features splicing,using collaborative attention mechanism for cross-modal information interaction helps to improve the perception of reviews helpfulness.

Key words: Review helpfulness, Co-attention mechanism, Multimodal fusion, Natural language processing, Deep learning

中图分类号: 

  • TP391.1
[1]HONG H,XU D,WANG G A,et al.Understanding the determinants of online review helpfulness:A meta-analytic investigation[J].Decision Support Systems,2017,102:1-11.
[2]KARIMI S,WANG F.Online review helpfulness:Impact of reviewer profile image[J].Decision Support Systems,2017,96:39-48.
[3]DU J,RONG J,MICHALSKA S,et al.Feature selection forhelpfulness prediction of online product reviews:An empirical study[J].PloS One,2019,14(12):e0226902.
[4]MUDAMBI S M,SCHUFF D.What Makes a Helpful Online Review? A Study of Customer Reviews on Amazon.com[J].MIS Quarterly,2010,34(1):185-200.
[5]SALEHAN M,KIM D J.Predicting the performance of online consumer reviews:A sentiment mining approach to big data analytics[J].Decision Support Systems,2016,81:30-40.
[6]CHATTERJEE S.Drivers of helpfulness of online hotel re-views:A sentiment and emotion mining approach[J].International Journal of Hospitality Management,2020,85:102356.
[7]PRIETO A,PRIETO B,ORTIGOSA E M,et al.Neural net-works:An overview of early research,current frameworks and new challenges[J].Neurocomputing,2016,214:242-268.
[8]SAUMYA S,SINGH J P,DWIVEDI Y K.Predicting the helpfulness score of online reviews using convolutional neural network[J].Soft Computing,2020,24(15):10989-11005.
[9]FAN M,FENG C,GUO L,et al.Product-Aware HelpfulnessPrediction of Online Reviews[C]//The World Wide Web Conference.2019.
[10]XU S,BARBOSA S E,HONG D.Bert feature based model for predicting the helpfulness scores of online customers reviews[C]//Future of Information and Communication Conference.Cham:Springer,2020:270-281.
[11]MA Y,XIANG Z,DU Q,et al.Effects of user-provided photos on hotel review helpfulness:An analytical approach with deep leaning[J].International Journal of Hospitality Management,2018,71:120-131.
[12]PAN Y,ZHANG J Q.Born unequal:a study of the helpfulness of user-generated product reviews[J].Journal of retailing,2011,87(4):598-612.
[13]LI M,HUANG L,TAN C H,et al.Helpfulness of online pro-duct reviews as seen by consumers:Source and content features[J].International Journal of Electronic Commerce,2013,17(4):101-136.
[14]LIU A X,LI Y,XU S X.Assessing the Unacquainted:Inferred Reviewer Personality and Review Helpfulness[J].MIS Quarterly,2021,45(3):1113-1148.
[15]REN G,HONG T.Examining the relationship between specific negative emotions and the perceived helpfulness of online reviews[J].Information Processing & Management,2019,56(4):1425-1438.
[16]MALIK M S I,HUSSAIN A.An analysis of review content and reviewer variables that contribute to review helpfulness[J].Information Processing & Management,2018,54(1):88-104.
[17]LEE S,CHOEH J Y.The determinants of helpfulness of online reviews[J].Behaviour & Information Technology,2016,35(10/11/12):853-863.
[18]DU J,RONG J,WANG H,et al.Neighbor-aware review helpfulness prediction[J].Decision Support Systems,2021,148:113581.
[19]LI H.Deep learning for natural language processing:advantages and challenges[J].National Science Review,2018,5(1):24-26.
[20]BRAUWERS G,FRASINCAR F.A General Survey on Attention Mechanisms in Deep Learning[J].IEEE Transactions on Knowledge and Data Engineering,2021,35(4):3279-3298.
[21]LU J,YANG J,BATRA D,et al.Hierarchical question-imageco-attention for visual question answering[C]//Proceedings of the 30th International Conference on Neural Information Processing Systems.Cambridge:MIT Press,2016:289-297.
[22]YANG Z,HE X,GAO J,et al.Stacked attention networks for image question answering[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2016:21-29.
[23]NAM H,HA J W,KIM J.Dual attention networks for multimodal reasoning and matching[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:299-307.
[24]KAZEMI V,ELQURSH A.Show,ask,attend,and answer:Astrong baseline for visual question answering[J].arXiv:1704.03162,2017.
[25]SUSSMAN S W,SIEGAL W S.Informational influence in organizations:An integrated approach to knowledge adoption[J].Information Systems Research,2003,14(1):47-65.
[26]SAUMYA S,SINGH J P,BAABDULLAH A M,et al.Ranking online consumer reviews[J].Electronic Commerce Research and Applications,2018,29:78-89.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!