计算机科学 ›› 2023, Vol. 50 ›› Issue (9): 160-167.doi: 10.11896/jsjkx.220700035
李海明1, 朱智蘅1, 刘磊2, 过辰楷3
LI Haiming1, ZHU Zhiheng1, LIU Lei2, GUO Chenkai3
摘要: 随着智能终端设备以及移动应用软件的普及,用户对应用质量的要求和用户体验需要愈发凸显。移动应用的评分推荐作为一项有效的事前评估手段,逐渐得到市场关注。传统的应用评分推荐工作主要围绕解决数据稀疏和模型深度问题,未能对应用推荐本身的图结构、多任务形态进行准确表征。针对该问题,提出了一种面向移动应用评分推荐的图嵌入多任务模型AppGRec,利用归纳型二部图的嵌入结构对特征中的用户交互关系进行挖掘,并使用shared-bottom多任务模型捕获应用评分中的多任务特点,同时兼顾了数据稀疏和模型深度的影响。在Google Play上收集了16 031个有效的移动应用及其特征数据作为验证数据集,实验结果表明,AppGRec在MAE和RMSE上相比state-of-the-art模型分别提升了10.4%和10.9%。此外,对AppGRec超参和核心模块的影响做了具体分析,多角度验证其有效性。
中图分类号:
[1]KOREN Y.Collaborative filtering with temporal dynamics[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and data Mining.2009:447-456. [2]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-ma-chine based neural network for CTR prediction[J].arXiv:1703.04247,2017. [3]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. [4]ELKAHKY A M,SONG Y,HE X.A multi-view deep learning approach for cross domain user modeling in recommendation systems[C]//Proceedings of the 24th International Conference on World Wide Web.2015:278-288. [5]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware networkfor news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1835-1844. [6]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International conference on World Wide Web.2017:173-182. [7]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph atten-tion network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [8]FOUSS F,PIROTTE A,RENDERS J M,et al.Random-walkcomputation of similarities between nodes of a graph with application to collaborative recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2007,19(3):355-369. [9]FAN W,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]//The World Wide Web Conference.2019:417-426. [10]BAE D,HAN K,PARK J,et al.AppTrends:A graph-based mobile app recommendation system using usage history[C]//2015 International Conference on Big Data and Smart Computing(BIGCOMP).IEEE,2015:210-216. [11]OUYANG Y,GUO B,TANG X,et al.Mobile App Cross-Domain Recommendation with Multi-Graph Neural Network[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2021,15(4):1-21. [12]YU H,XIA X,ZHAO X,et al.Combining collaborative filtering and topic modeling for more accurate android mobile app library recommendation[C]//Proceedings of the 9th Asia-Pacific Symposium on Internetware.2017:1-6. [13]LIN K P,CHANG Y W,SHEN C Y,et al.Leveraging onlineword of mouth for personalized app recommendation[J].IEEE Transactions on Computational Social Systems,2018,5(4):1061-1070. [14]YIN H,CHEN L,WANG W,et al.Mobi-sage:A sparse additive generative model for mobile app recommendation[C]//2017 IEEE 33rd International Conference on Data Engineering(ICDE).IEEE,2017:75-78. [15]CAO D,NIE L,HE X,et al.Version-sensitive mobile app re-commendation[J].Information Sciences,2017,381:161-175. [16]YAO Y,ZHAO W X,WANG Y,et al.Version-aware ratingprediction for mobile app recommendation[J].ACM Transactions on Information Systems(TOIS),2017,35(4):1-33. [17]LIU B,WU Y,GONG N Z,et al.Structural analysis of user choices for mobile app recommendation[J].ACM Transactions on Knowledge Discovery from Data(TKDD),2016,11(2):1-23. [18]TU Z,LI Y,HUI P,et al.Personalized Mobile App Recommendation by Learning User's Interest from Social Media[J].IEEE Transactions on Mobile Computing,2019,19(11):2670-2683. [19]XU Y,ZHU Y,SHEN Y,et al.Leveraging app usage contexts for app recommendation:a neural approach[J].World Wide Web,2019,22(6):2721-2745. [20]LIANG T,SHENG X,ZHOU L,et al.Mobile app recommendation via heterogeneous graph neural network in edge computing[J].Applied Soft Computing,2021,103:107162. [21]XIE F,CAO Z,XU Y,et al.Graph neural network and multi-view learning based mobile application recommendation in hete-rogeneous graphs[C]//2020 IEEE International Conference on Services Computing(SCC).IEEE,2020:100-107. [22]ZHANG M,ZHAO J,DONG H,et al.A knowledge graph based approach for mobile application recommendation[C]//International Conference on Service-Oriented Computing.Cham:Springer,2020:355-369. [23]GUO C,XU Y,HOU X,et al.Deep attentive factorization machine for app recommendation service[C]//2019 IEEE International Conference on Web Services(ICWS).IEEE,2019:134-138. [24]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality[J].arXiv:1310.4546,2013. [25]YING R,HE R,CHEN K,et al.Graph convolutional neural net-works for web-scale recommender systems[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:974-983. [26]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016. [27]VELIC'KOVICˇ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017. [28]HAMILTON W,YING Z T,LESKOVEC J.Inductive representation learning on large graphs[C]//Proceedings of Advances in Neural Information Processing Systems.2017:1024-1034. [29]SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[C]//Proceedings of Advances in Neural Information Processing Systems.2007:1257-1264. [30]RENDLE S.Factorization machines[C]//2010 IEEE International Conference on Data Mining.IEEE,2010:995-1000. [31]SHAZEER N,MIRHOSEINI A,MAZIARZ K,et al.Outra-geously large neural networks:The sparsely-gated mixture-of-experts layer[J].arXiv:1701.06538,2017. [32]MA J,ZHAO Z,YI X,et al.Modeling task relationships inmulti-task learning with multi-gate mixture-of-experts[C]//Proceedings of the 24th ACM SIGKDD InternationalConfe-rence on Knowledge Discovery & Data Mining.2018:1930-1939. [33]CHEN C,ZHANG M,LIU Y,et al.Neural attentional rating regression with review-level explanations[C]//Proceedings of the 2018 World Wide Web Conference.2018:1583-1592. [34]WANG X,HE X,WANG M,et al.Neural graph collaborativefiltering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. |
|