计算机科学 ›› 2023, Vol. 50 ›› Issue (11): 192-200.doi: 10.11896/jsjkx.230300241
康梦瑶1,2, 刘扬1,2, 黄俊恒1,2, 王佰玲1,2, 刘树龙1
KANG Mengyao1,2, LIU Yang1,2, HUANG Junheng1,2, WANG Bailing1,2, LIU Shulong1
摘要: 社交网络的发展在给人们带来便捷的同时也产生了海量的聊天数据,如何从聊天对话中筛选出关键信息成为一大难题。聊天摘要是解决此类问题的有效工具,既不必重复浏览冗长的聊天记录,又可以快速获取重要内容。目前,预训练模型被广泛应用于各种类型的文本,包括非结构化、半结构化和结构化文本。然而,针对聊天对话文本的应用,常见的预训练模型难以捕捉到其独特的结构特征,仍需进一步探索与改进。对此,提出了一种基于对比学习的聊天摘要算法MGCSum。该算法无需人工标注数据集,便于学习和迁移。首先使用文档频数、词项频数和信息熵构造了针对聊天文本的停用词列表,去除聊天中的干扰信息;其次,从词语和主题两个粒度进行自监督对比学习,识别对话中的结构信息,挖掘聊天中的关键词和不同主题信息。在聊天摘要公开数据集SAMSum和金融欺诈对话数据集FINSum上进行实验,结果表明,与当前主流的聊天摘要方法相比,该算法在摘要的连贯性、信息量和ROUGE评价指标上均有显著提升。
中图分类号:
[1]中国互联网络信息中心.第51次《中国互联网络发展状况统计报告》.[EB/OL].https://www.cnnic.cn/n4/2023/0302/c199-10755.html. [2]KRYSCINSKI W,KESKAR N S,MCCANN B,et al.NeuralText Summarization:A Critical Evaluation[C]//Conference on Empirical Methods in Natural Language Processing & International Joint Conference on Natural Language Processing.2019:540-551. [3]KOTO F.A publicly available Indonesian corpora for automatic abstractive and extractive chat summarization[C]//Interna-tional Conference on Language Resources and Evaluation.2016:801-805. [4]ZOU Y,LIN J,ZHAO L,et al.Unsupervised summarization for chat logs with topic-oriented ranking and context-aware auto-encoders[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021,35(16):14674-14682. [5]SHANG G,DING W,ZHANG Z,et al.Unsupervised Abstractive Meeting Summarization with Multi-Sentence Compression and Budgeted Submodular Maximization[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.2018:664-674. [6]ZHENG J,ZHAO Z,SONG Z,et al.Abstractive meeting summarization by hierarchical adaptive segmental network learning with multiple revising steps [J].Neurocomputing,2020,378:179-188. [7]ZHU C,XU R,ZENG M,et al.End-to-end abstractive summarization for meetings [J].arXiv:2004.02016,2020. [8]GLIWA B,MOCHOL I,BIESEK M,et al.SAMSum Corpus:AHuman-annotated Dialogue Dataset for Abstractive Summarization[C]//Workshop on New Frontiers in Summarization.2019:70-79. [9]CHEN J,YANG D.Multi-View Sequence-to-Sequence Modelswith Conversational Structure for Abstractive Dialogue Summarization[C]//Conference on Empirical Methods in Natural Language Processing.2020:4106-4118. [10]CHEN J,YANG D.Structure-Aware Abstractive Conversation Summarization via Discourse and Action Graphs[C]//Confe-rence of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2021:1380-1391. [11]WU C S,LIU L,LIU W,et al.Controllable abstractive dialogue summarization with sketch supervision[J].arXiv:2105.14064,2021. [12]ZHAO L,XU W,GUO J.Improving abstractive dialogue summarization with graph structures and topic words[C]//International Conference on Computational Linguistics.2020:437-449. [13]FANG H,WANG S,ZHOU M,et al.Cert:Contrastive self-supervised learning for language understanding[J].arXiv:2005.12766,2020. [14]KLEIN T,NABI M.Contrastive Self-Supervised Learning forCommonsense Reasoning[C]//Annual Meeting of the Association for Computational Linguistics.2020:7517-7523. [15]GUNEL B,DU J,CONNEAU A,et al.Supervised contrastivelearning for pre-trained language model fine-tuning[J].arXiv:2011.01403,2020. [16]GAO T,YAO X,CHEN D.SimCSE:Simple Contrastive Lear-ning of Sentence Embeddings[C]//Conference on Empirical Methods in Natural Language Processing,Association for Computational Linguistics.2021:6894-6910. [17]SCHROFF F,KALENICHENKO D,PHILBIN J.Facenet:Aunified embedding for face recognition and clustering[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2015:815-823. [18]XU S,ZHANG X,WU Y,et al.Sequence level contrastivelearning for text summarization[C]//Conference on Artificial Intelligence.2022:11556-11565. [19]ZHONG M,LIU P,CHEN Y,et al.Extractive Summarization as Text Matching[C]//Annual Meeting of the Association for Computational Linguistics.2020:6197-6208. [20]WU H,MA T,WU L,et al.Unsupervised Reference-Free Summary Quality Evaluation via Contrastive Learning[C]//Confe-rence on Empirical Methods in Natural Language Processing.2020:3612-3621. [21]LIU Y,LIU P.SimCLS:A Simple Framework for ContrastiveLearning of Abstractive Summarization[C]//Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:1065-1072. [22]LIU J,ZOU Y,ZHANG H,et al.Topic-Aware ContrastiveLearning for Abstractive Dialogue Summarization[C]//Asso-ciation for Computational Linguistics:EMNLP.2021:1229-1243. [23]GENG Z,ZHONG M,YIN Z,et al.Improving Abstractive Dialogue Summarization with Speaker-Aware Supervised Contrastive Learning[C]//International Conference on Computational Linguistics.2022:6540-6546. [24]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].Advances in Neural Information Processing Systems,2017,30:5998-6008. [25]LEWIS M,LIU Y,GOYAL N,et al.Bart:Denoising sequence-to-sequence pre-training for natural language generation,translation,and comprehension[J].arXiv:1910.13461,2019. [26]SINKA M P,CORNE D W.Towards modernised and web-specific stoplists for web document analysis[C]//International Conference on Web Intelligence.IEEE,2003:396-402. [27]LIN C Y.Rouge:A package for automatic evaluation of summaries[C]//Proceedings of the Workshop on Text Summarization Branches Out.2004:74-81. [28]ZHANG Y,SUN S,GALLEY M,et al.Dialogpt:Large-scalegenerative pre-training for conversational response generation[J].arXiv:1911.00536,2019. [29]WU F,FAN A,BAEVSKI A,et al.Pay less attention withlightweight and dynamic convolutions[J].arXiv:1901.10430,2019. [30]CHEN Y C,BANSAL M.Fast Abstractive Summarization with Reinforce-Selected Sentence Rewriting[C]//Annual Meeting of the Association for Computational Linguistics.2018:675-686. [31]FENG X,FENG X,QIN B.Incorporating commonsense know-ledge into abstractive dialogue summarization via heterogeneous graph networks[C]//Chinese Computational Linguistics:20th China National Conference.Cham:Springer International Publishing,2021:127-142. [32]DONG L,YANG N,WANG W,et al.Unified language model pre-training for natural language understanding and generation[J].Advances in Neural Information Processing Systems,2019,32:13063-13075. [33]KIM S,JOO S J,CHAE H,et al.Mind the Gap! Injecting Commonsense Knowledge for Abstractive Dialogue Summarization[J].arXiv:2209.00930,2022. |
|