计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230200163-6.doi: 10.11896/jsjkx.230200163

• 图像处理&多媒体技术 • 上一篇    下一篇

基于多尺度改进的YOLOv5电解槽设备及样品检测方法

吴姣姣, 刘铮   

  1. 长沙理工大学电气与信息工程学院 长沙 410114
  • 发布日期:2023-11-09
  • 通讯作者: 刘铮(leo_johncn@csust.edu.cn)
  • 作者简介:(1228815302@qq.com)

Electrolyzer Equipment and Sample Detection Method Based on Multi-scale Improved YOLOv5

WU Jiaojiao, LIU Zheng   

  1. School of Electrical and Information Engineering,Changsha University of Science and Technology,Changsha 410114,China
  • Published:2023-11-09
  • About author:WU Jiaojiao,born in 1998,postgra-duate,is a member of China Computer Federation.Her main research interest is visual image processing.
    LIU Zheng,born in 1977,Ph.D.His main research interests include power electronics and power robots.

摘要: 针对电解铝车间电解槽转运机器人实时识别问题,电解槽设备和铝锭样品的目标检测存在识别物体尺寸差异过大的问题,通常使用的目标检测算法参数较大,部署在电解槽转运机器人上难以达到实时检测的要求。因此,提出一种解决目标尺寸差异过大的轻量化多尺度的YOLOv5网络模型,替换主干特征提取网络为轻量化ShufflenetV2网络;添加SE注意力机制提高小目标识别准确率;在加强特征提取网络中增加一层浅层检测层作为更小目标的检测层,实现对多尺度以及尺寸变化大的目标的识别准确率。实验结果表明,改进后的YOLOv5算法在电解槽转运机器人的电解槽设备和样品识别中物体总类别的平均检测精度为93.5%,相比YOLOv5算法平均检测精度提升了1.5%,模型参数量降低了约39.4%,每张图片平均检测速度提升了2.5 ms,有利于部署到电解槽转运机器人中。

关键词: YOLOv5, 轻量化, 注意力机制, 多尺度目标检测, 目标尺寸差异

Abstract: Aiming at the real-time recognition problem of electrolytic cell transfer robot in electrolytic aluminum workshop,there is a problem that the size difference of the recognition object is too large for the target detection of electrolytic cell equipment and aluminum ingot samples.Generally,the parameters of the target detection algorithm are large,and it is difficult to meet the requirements of real-time detection when deployed on electrolyzer transfer robots.Therefore,a lightweight multi-scale YOLOv5 network model that solves the excessive difference in target size is proposed,and the backbone feature extraction network is replaced by a lightweight Shufflenet V2 network.Add SE attention mechanism to improve the accuracy of small target recognition.In the enhanced feature extraction network,a shallow detection layer is added as the detection layer for smaller targets to achieve the recognition accuracy of multi-scale and large size changes.Experimental results show that the average detection accuracy of the improved YOLOv5 algorithm in the electrolyzer equipment and sample identification of the electrolyzer transfer robot is 93.5%,which is 1.5% higher than the average detection accuracy of the YOLOv5 algorithm,the number of model parameters reduces by about 39.4%,and the average detection speed of each picture increases by 2.5 milliseconds,which is conducive to deployment to the Electrolyzer transfer robot.

Key words: YOLOv5, Lightweight, Attention mechanism, Multi-scale object detection, Target size difference

中图分类号: 

  • TP391
[1]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single ShotMulti Box Detector[C]//European Conference on Computer Vision.Cham:Springer,2015:21-37.
[2]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition.2017:936-944.
[3]GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448.
[4]ZHANG Y,ZHANG M L,LV X L,et al.Review of deep lear-ning small target detection algorithm[J].Computer Engineering and Application,2022,58(15):1-17.
[5]FAN L L,ZHAO H W,ZHAO H Y,et al.Review of object detection based on deep convolutional neural network[J].Optics and Precision Engineering,2020,28(5):1152-1164.
[6]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768.
[7]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790.
[8]IANDOLA F N,HAN S,MOSKEWICZ M W,et al.Sque-ezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J].arXiv:1602.07360,2016.
[9]ZHANG X,ZHOU X,LINM,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856.
[10]CHOLLET F.Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1251-1258.
[11]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520.
[12]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826.
[13]XIONG K F,FAN S S,WU J.Identification method of powerequipment in foggy substation based on improved YOLOv4[J].Radio Engineering,2022,52(8):1504-1512.
[14]PI J,LIU Y H,LI J H.Research on lightweight forest fire detection algorithm based on YOLOv5s[J].Journal of Graphics,2023,44(1):26-32.
[15]WANG P F,HUANG H M,WANG M Q.Improved complex road target detection algorithm for YOLOv5[J].Computer Engineering and Applications,2022,58(17):81-92.
[16]WANG G W.Multi-scale feature fusion to improve pedestrian and vehicle detection in YOLOv3 network[D].Nanjing University of Posts and Telecommunications,2019.
[17]DUBEY S R,CHAKRABORTY S,ROY S K,et al.DiffGrad:an optimization method for convolutional neural networks[J].IEEE transactions on neural networks and learning systems,2019,31(11):4500-4511.
[18]LOSHCHILOV I,HUTTER F.Sgdr:Stochastic gradient de-scent with warm restarts[J].arXiv:1608.03983,2016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!