计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230200163-6.doi: 10.11896/jsjkx.230200163
吴姣姣, 刘铮
WU Jiaojiao, LIU Zheng
摘要: 针对电解铝车间电解槽转运机器人实时识别问题,电解槽设备和铝锭样品的目标检测存在识别物体尺寸差异过大的问题,通常使用的目标检测算法参数较大,部署在电解槽转运机器人上难以达到实时检测的要求。因此,提出一种解决目标尺寸差异过大的轻量化多尺度的YOLOv5网络模型,替换主干特征提取网络为轻量化ShufflenetV2网络;添加SE注意力机制提高小目标识别准确率;在加强特征提取网络中增加一层浅层检测层作为更小目标的检测层,实现对多尺度以及尺寸变化大的目标的识别准确率。实验结果表明,改进后的YOLOv5算法在电解槽转运机器人的电解槽设备和样品识别中物体总类别的平均检测精度为93.5%,相比YOLOv5算法平均检测精度提升了1.5%,模型参数量降低了约39.4%,每张图片平均检测速度提升了2.5 ms,有利于部署到电解槽转运机器人中。
中图分类号:
[1]LIU W,ANGUELOV D,ERHAN D,et al.SSD:Single ShotMulti Box Detector[C]//European Conference on Computer Vision.Cham:Springer,2015:21-37. [2]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature pyramidnetworks for object detection[C]//Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition.2017:936-944. [3]GIRSHICK R.Fast r-cnn[C]//Proceedings of the IEEE International Conference on Computer Vision.2015:1440-1448. [4]ZHANG Y,ZHANG M L,LV X L,et al.Review of deep lear-ning small target detection algorithm[J].Computer Engineering and Application,2022,58(15):1-17. [5]FAN L L,ZHAO H W,ZHAO H Y,et al.Review of object detection based on deep convolutional neural network[J].Optics and Precision Engineering,2020,28(5):1152-1164. [6]LIU S,QI L,QIN H,et al.Path aggregation network for instance segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:8759-8768. [7]TAN M,PANG R,LE Q V.Efficientdet:Scalable and efficient object detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2020:10781-10790. [8]IANDOLA F N,HAN S,MOSKEWICZ M W,et al.Sque-ezeNet:AlexNet-level accuracy with 50x fewer parameters and <0.5 MB model size[J].arXiv:1602.07360,2016. [9]ZHANG X,ZHOU X,LINM,et al.Shufflenet:An extremely efficient convolutional neural network for mobile devices[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:6848-6856. [10]CHOLLET F.Xception:Deep learning with depthwise separable convolutions[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1251-1258. [11]SANDLER M,HOWARD A,ZHU M,et al.Mobilenetv2:Inverted residuals and linear bottlenecks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:4510-4520. [12]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [13]XIONG K F,FAN S S,WU J.Identification method of powerequipment in foggy substation based on improved YOLOv4[J].Radio Engineering,2022,52(8):1504-1512. [14]PI J,LIU Y H,LI J H.Research on lightweight forest fire detection algorithm based on YOLOv5s[J].Journal of Graphics,2023,44(1):26-32. [15]WANG P F,HUANG H M,WANG M Q.Improved complex road target detection algorithm for YOLOv5[J].Computer Engineering and Applications,2022,58(17):81-92. [16]WANG G W.Multi-scale feature fusion to improve pedestrian and vehicle detection in YOLOv3 network[D].Nanjing University of Posts and Telecommunications,2019. [17]DUBEY S R,CHAKRABORTY S,ROY S K,et al.DiffGrad:an optimization method for convolutional neural networks[J].IEEE transactions on neural networks and learning systems,2019,31(11):4500-4511. [18]LOSHCHILOV I,HUTTER F.Sgdr:Stochastic gradient de-scent with warm restarts[J].arXiv:1608.03983,2016. |
|