计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230300073-6.doi: 10.11896/jsjkx.230300073

• 大数据&数据科学 • 上一篇    下一篇

基于PCA-MC的土壤湿度数据重构算法

王杉, 刘璐   

  1. 华东交通大学信息工程学院 南昌 330006
  • 发布日期:2023-11-09
  • 通讯作者: 刘璐(923972114@qq.com)
  • 作者简介:(patrick_shan@163.com)
  • 基金资助:
    国家自然科学基金(41965007)

Soil Moisture Data Reconstruction Based on Low Rank Matrix Completion Method

WANG Shan, LIU Lu   

  1. School of Information Engineering,East China Jiaotong University,Nanchang 330006,China
  • Published:2023-11-09
  • About author:WANG Shan,born in 1981,Ph.D,professor,master supervisor.His main research interests include image proces-sing and artificial intelligence.
    LIU Lu,born in 1998,postgraduate.Her main research interests include image processing and matrix completion.
  • Supported by:
    National Natural Science Foundation of China(41965007).

摘要: 土壤湿度在气象、气候等学科中起着重要作用,然而目前观测的土壤湿度数据缺少高精度、高空间分辨率,其适用性受到很大的限制。矩阵填充(Matrix Completion,MC)是压缩感知在矩阵上的应用,它针对部分缺失、污染、损毁的大规模数据,旨在将一个低秩不完整的矩阵,利用其元素间的相关性,恢复出矩阵的全部数据,适用于土壤湿度这类时空相关性高但缺失值多的数据。但其要求矩阵秩是相关或近似相关的,而土壤湿度的秩不稳定。对此,通过预设矩阵的秩,引入主成分分析方法(Principal Component Analysis,PCA),在降低矩阵维度的同时保留大部分信息,并在此基础上对具有缺失值的土壤湿度数据进行矩阵填充。实验选取了ERA-Interim 2022年部分地区的卫星土壤湿度数据,结果显示,相较于传统的MC算法,引入主成分分析的PCA-MC(Low Rank Matrix Completion)的实验结果的偏差减小了28.6%,均方根误差减小了5.78%,最大误差减小了14.8%,同时缩短了重构时间,这表明,PCA-MC方法相比MC方法可以有效地重构有缺失值的大规模矩阵。

关键词: 土壤湿度, 卫星数据, 矩阵填充, 主成分分析, 数据重构

Abstract: Soil moisture plays an important role in meteorology,climatology and other disciplines.However,the current observational soil moisture data lacks of high precision and high spatial resolution,and its applicability is greatly limited.Matrix completion(MC) is the application of compressed sensing on matrix.It aims at partial missing,contaminated and damaged large-scale data,and aims to recover all the data of the matrix from a low-rank incomplete matrix by using the correlation between its elements.It is applicable to data with high spatial and temporal correlation but many missing values,such as soil moisture.However,the matrix rank is required to be correlated or approximately correlated,while the rank of soil moisture is unstable.Therefore,we presuppose the rank of the matrix and introduce principal component analysis(PCA) to reduce the matrix dimension while retaining most of the information.On this basis,matrix filling of soil moisture data with missing values is carried out.The experiment selects ERA-Interim 2022 satellite soil moisture data in some areas,and the results show that,compared with traditional MC algorithms,the error of experiment results of low rank matrix completion(PCA-MC) using principal component analysis is reduced by 28.6%.The root mean square error is reduced by 5.78%,the maximum error is reduced by 14.8%,and the reconstruction time is shortened at the same time,which indicates that the PCA-MC method can effectively reconstruct the large-scale matrix with missing values compared with the MC method.

Key words: Soil moisture, Satellite data, Matrix completion, Principal component analysis, Data reconstruction

中图分类号: 

  • TP751
[1]JACKSON T J,SCHMUGGE J,ENGMAN E T.Remote Sen-sing Applications to Hydrology[J].Hydrological Sciences Journal/Journal des Sciences Hydrologiques,1996,41(4):517-530.
[2]THOMAS J,JACKSONIII.Measuring surface soil moistureusing passive microwave remote sensing[J].Hydrological Processes,1993,7(2):139-152.
[3]KOSTER R D,SUAREZ M J,HEISER M.Variance and predictability of precipitation at seasonal-to-interannual timescales [J].Hydrometeor,2000,1(1):26-46.
[4]YEH T,WETHERALD R T,MANABE S.The effect of soilmoisture on the short-term climate and hydrology change-A numerical experiment[J].Monthly Weather Review,1984,112(3):474-490.
[5]LI J Y,XI Y,ZHAO J F.Effects of soil moisture on soil methane uptake in tropical forests in southern China[J].Acta Ecologica Sinica,42(12):4978-4987.
[6]ENTIN J K,ROBOCK A,VINNIKOV K Y,et al.Evaluation of global soil wetness project soil moisture simulations[J].Journal of the Meteorological Society of Japan,2009,77(1):183-198.
[7]FENG Z M,YANG Y Z,DING X Q,et al.Optimization of spatial interpolation method for meteorological elements[J].Geographical Studies,2004(3):357-364.
[8]CANDES E,RECHT B.Exact matrix completion via convex optimization[J].Communications of the ACM,2012,55(6):111-119.
[9]KESHAVAN R,MONTANARI A,OH S.Matrix completionfrom noisy entries[J].Advances in Neural Information Proces-sing Systems,2010(69),22.
[10]BECKER S,CEVHER V,KYRILLIDIS A.Randomized low-memory singular value projection[J].arXiv:1303,0167,2013.
[11]ZHAO Y J,ZHENG B Y,CHEN S N.Compressed sensing and matrix filling and their applications in image processing[J].Journal of Nanjing University of Posts and Telecommunications(Natural Science Edition),2015,35(3):18-26.
[12]JOHNSON C R.Matrix Completion Problems:A Survey[M].Matrix Completion Problems:A Survey,1990.
[13]COVER T M,HART P E.Nearest neighbor pattern classification[J].IEEE Trans. Inf. Theory,1953,13(1):21-27.
[14]KONG L,JIANG D,WU M Y.Optimizing the spatio-temporal distribution of cyber-physical systems for environment abstraction[C] //2010 IEEE 30th International Conference on Distri-buted Computing Systems.2010:179-188.
[15]ZHU H,ZHU Y,LI M,et al.SEER:Metropolitan-scale traffic perception based on lossy sensory data[C]//IEEE INFOCOM 2009.2009:217-225.
[16]WANG S,HU J,SHAN H,et al.Temperature Field Data Reconstruction Using the Sparse Low-Rank Matrix Completion Method[J].Advances in Meteorology,2019,(Pt.2):3676182-1-3676182-10.
[17]SUN G L,LIU X C,LI Z Z,et al.A multi-time slot data acquisition method for ambient temperature and humidity based on matrix filling:China,CN 112036000 A[P].2020-12-04.https://www.zhuanlichaxun.net/pdf/10219422.html.
[18]LI C Y,ZHU L,BAO W Z,et al.Convex local sensitive low rank matrix approximation[C] //2017 International Joint Conference on Neural Networks(IJCNN).2017:256-261.
[19]TRIPATHI R,MOHAN B,RAJAWAT K.Adaptive low-rankmatrix completion[J].IEEE Transactions on Signal Processing,2017,65(14):3603-3616.
[20]CAI J F,CANDÈS E J,SHEN Z.A singular value thresholding algorithm for matrix completion[J].2010,20(4):1956-1982.
[21]CANDÉS E J,LI X,MA Y,et al.Robust principal componentanalysis?[J].Journal of the ACM (JACM),2011,58(3):1-37.
[22]CANDÈS E J,TAO T.The power of convex relaxation:Near-optimal matrix completion[J].IEEE Transactions on Information Theory,2010,56(5):2053-2080.
[23]CANDES E J,PLAN Y.Matrix completion with noise[J].Proceedings of the IEEE,2010,98(6):925-936.
[24]FAZEL M.Matrix rank minimization with applications[D].Stanford University,2002.
[25]JAIN P,MEKA R,DHILLON I.Guaranteed rank minimization via singular value projection[J].arXiv:0909.5457,2009.
[26]LIN Z,CHEN M,MA Y.The augmented lagrange multipliermethod for exact recovery of corrupted low-rank matrices[J].arXiv:1009.5055,2010.
[27]PEARSON K J T L,EDINBURGH,MAGAZINE D P,et al.On lines and planes of closest fit to systems of points in space[J].The London,Edinburgh,and Dublin Philosophical Magazine and Journal of Science,1901,2(11):559-572.
[28]HOTELLING H.Analysis of a complex of statistical variables into principal components[J].Journal of Educational Psycho-logy,1933,24(6):417.
[29]LIANG S J,ZHANG Z H,CUI L L,et al.Dimension reduction method based on principal component analysis and nuclear independent component analysis[J].Systems Engineering and electronics,2011,33(9):2144-2148.
[30]WEN Z,YIN W,ZHANG Y.Solving a low-rank factorizationmodel for matrix completion by a nonlinear successive over-relaxation algorithm[J].Mathematical Programming Computation,2012,4(4):333-361.
[31]SHI C X,XIE Z H,TIAN X J,et al.Soil moisture assimilation by satellite remote sensing based on EnKF algorithm[C] //Sa-tellite Remote sensing Application Technology and Processing Methods.2008 Annual Meeting of the Chinese Meteorological Society,2008:372.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!