计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 220900180-7.doi: 10.11896/jsjkx.220900180

• 大数据&数据科学 • 上一篇    下一篇

基于知识图残差注意力网络的推荐方法

范洪玉, 张永库, 孟祥福   

  1. 辽宁工程技术大学电子与信息工程学院 辽宁 葫芦岛 125105
  • 发布日期:2023-11-09
  • 通讯作者: 孟祥福(marxi@126.com)
  • 作者简介:(fan_hy1997@163.com)
  • 基金资助:
    辽宁省教育厅科学研究项目(LJKZ0355)

Recommendation Method Based on Knowledge Graph Residual Attention Networks

FAN Hongyu, ZHANG Yongku, MENG Xiangfu   

  1. School of Electronic and Information Engineering,Liaoning Technical University,Huludao,Liaoning 125105,China
  • Published:2023-11-09
  • About author:FAN Hongyu,born in 1997,postgra-duate.Her main research interests include recommendation system and so on.
    MENG Xiangfu,born in 1981,Ph.D,professor,is a senior member of China Compuer Federation.His main research interests include big data analysis and query,spatio-temporal data mining,and machine learning algorithms.
  • Supported by:
    Liaoning Provincial Department of Education Scientific Research Project(LJKZ0355).

摘要: 随着互联网的高速发展,推荐系统已成为缓解信息过载的重要手段之一。当前的推荐方法主要采用深度学习模型挖掘用户对项目的兴趣度,但是目前使用图神经网络的推荐方法无法有效表征用户和项目之间的交互行为,并且网络层数的增加会产生梯度消失问题。因此,文中提出了一种新的模型,基于正交变换和图上下文的知识图嵌入方式并融合残差网络和注意力机制的模型。首先,通过嵌入节点的邻居属性来表征用户与项目的交互行为,然后通过图神经网络和残差网络分析用户项目交互行为,最后利用注意力机制区分不同的邻域,提高推荐的准确性。通过在Alibaba-fashion和Last-FM两个真实数据集上进行实验,结果表明所提方法能够显著提升推荐效果。

关键词: 推荐系统, 图神经网络, 知识图谱, 协同过滤, 嵌入传播

Abstract: With the rapid development of the Internet today,recommendation system has become an important means to relieve the information overload.Current recommendation methods mainly use deep learning model to mine users’ interests in the project.However,the current recommendation methods using graph neural networks cannot effectively represent the interaction behaviors between users and items well,and the increase in the number of network layers will cause the problem of gradient disappearance.Therefore,this paper proposes a model that combines the GC-OTE knowledge graph embedding approach with residual networks and attention mechanisms.First,the interaction information of users or items is represented by embedding the neighbor attributes of nodes,then user-item interactions are analyzed by graph neural and residual networks,and finally,attention mechanisms are used to distinguish different neighborhoods.Experiments on two real-world datasets Alibaba-fashion and Last-FM demonstrate that the proposed method can significantly improve the recommendation performance.

Key words: Recommendation system, Graph neural network, Knowledge graph, Collaborative filtering, Embedding propagation

中图分类号: 

  • TP311
[1]ZHANG Y,SONG W.A collaborative filtering recommendation algorithm based on item genre and rating similarity[C]//2009 International Conference on Computational Intelligence and Na-tural Computing.IEEE,2009,2:72-75.
[2]SHAMBOUR Q,HUSSEIN A H,KHARMA Q,et al.Effective Hybrid Content-Based Collaborative Filtering Approach for Requirements Engineering[J].Comput.Syst.Sci.Eng.,2022,40(1):113-125.
[3]ZHAO X,ZHANG W,WANG J.Interactive collaborative filtering[C]//Proceedings of the 22nd ACM Int-ernational Confe-rence on Information & Knowledge Management.2013:1411-1420.
[4]REZAIMEHR F,DADKHAH C.A survey of attack detectionapproaches in collaborative filtering recom-mender systems[J].Artificial Intelligence Review,2021,54(3):2011-2066.
[5]JEONG B,LEE J,CHO H.Improving memory-based collaborative filtering via similarity updating and prediction modulation[J].Information Sciences,2010,180(5):602-612.
[6]HE R,MCAULEY J.Ups and downs:Modeling the visual evolution of fashion trends with one-class collaborative filtering[C]//Proceedings of the 25th International Conference on World Wide Web.2016:507-517.
[7]WU Y,DUBOIS C,ZHENG A X,et al.Collaborative denoising auto-encoders for top-n recommender systems[C]//Proceedings of the Ninth ACM International Conference on Web Search and Data Mining.2016:153-162.
[8]WANG X,HE X,FENG F,et al.Tem:Tree-enhanced embed-ding model for explainable recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1543-1552.
[9]WANG X,HE X,NIE L,et al.Item silk road:Recommendingitems from information domains to social users[C]//Procee-dings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:185-194.
[10]JAMALI M,ESTER M.A matrix factorization technique with trust propagation for recommendation in social networks[C]//Proceedings of the fourth ACM conference on Recommender systems.2010:135-142.
[11]KOREN Y.Factorization meets the neighborhood:a multiface-ted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2008:426-434.
[12]HAN W,ZHANG Z,ZHANG Y,et al.Contextnet:Improving convolutional neural networks for automatic speech recognition with global context[J].arXiv:2005.03191,2020.
[13]WANG H,ZHAO M,XIE X,et al.Knowledge graph convolutional networks for recommender systems[C]//The World Wide Web Conference.2019:3307-3313.
[14]LIN Y,LIU Z,SUN M,et al.Learning entity and relation embeddings for knowledge graph completion[C]//Twenty-ninth AAAI Conference on Artificial Intelligence.2015.
[15]TANG Y,HUANG J,WANG G,et al.Orthogonal relationtransforms with graph context modeling for knowledge graph embedding[J].arXiv:1911.04910,2019.
[16]SHI S,ZHANG M,LU H,et al.Wide & deep learning in job recommendation:An empirical study[C]//Asia Information Retrieval Symposium.Cham:Springer,2017:112-124.
[17]GUO H,TANG R,YE Y,et al.DeepFM:a factorization-machine based neural network for CTR prediction[J].arXiv:1703.04247,2017.
[18]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[19]HE X,CHUA T S.Neural factorization machines for sparse predictive analytics[C]//Proceedings of the 40th International ACM SIGIR conference on Research and Development in Information Retrieval.2017:355-364.
[20]SEDHAIN S,MENON A K,SANNER S,et al.Autorec:Autoencoders meet collabo-rative filtering[C]//Proceedings of the 24th International Conference on World Wide Web.2015:111-112.
[21]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender sys-tems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362.
[22]WANG H,ZHANG F,XIE X,et al.DKN:Deep knowledge-aware network for news recommendation[C]//Proceedings of the 2018 World Wide Web Conference.2018:1835-1844.
[23]JI G,HE S,XU L,et al.Knowledge graph embedding via dynamic mapping matrix[C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing(Volume 1:Long papers).2015:687-696.
[24]WANG H,ZHANG F,ZHAO M,et al.Multi-task feature lear-ning for knowledge graph enhanced recommendation[C]//The World Wide Web Conference.2019:2000-2010.
[25]SUN Z,YANG J,ZHANG J,et al.Recurrent knowledge graph embedding for effective recommendation[C]//Proceedings of the 12th ACM Conference on Recommender Systems.2018:297-305.
[26]WANG X,WANG D,XU C,et al.Explainable reasoning over knowledge graphs for recommendation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:5329-5336.
[27]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426.
[28]CAO Y,WANG X,HE X,et al.Unifying knowledge graphlearning and recommendation:Towards a better understanding of user preferences[C]//The World Wide Web Conference.2019:151-161.
[29]WU Z,PAN S,CHEN F,et al.A comprehensive survey ongraph neural networks[J].IEEE Transactions on Neural Networks and Learning Systems,2020,32(1):4-24.
[30]VELIČKOVIC′ P,CUCURULL G,CASANOVA A,et al.Graph attention networks[J].arXiv:1710.10903,2017.
[31]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778.
[32]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[J].arXiv:1609.02907,2016.
[33]HAMILTON W L,YING R,LESKOVEC J.Inductive Representation Learning on Large Graphs[J].arXiv:1706.02216,2017.
[34]ZHU H,FENG F,HE X,et al.Bilinear graph neural network with neighbor interactions[J].arXiv:2002.03575,2020.
[35]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.Bayesian personalized ranking from implicit feedback[C]//Proceedings of Uncertainty in Artificial Intelligence.2014:452-461.
[36]KINGMA D P,BA J.Adam:A method for stochastic optimization[J].arXiv:1412.6980,2014.
[37]RENDLE S,GANTNER Z,FREUDENTHALER C,et al.Fast context-aware recommendations with factorization machines[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval.2011:635-644.
[38]AI Q,AZIZI V,CHEN X,et al.Learning heterogeneous know-ledge base embeddings for explainable recommendation[J].Algorithms,2018,11(9):137-137.
[39]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26:2787-2795.
[40]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!