计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 230100019-9.doi: 10.11896/jsjkx.230100019
廖冬, 于海征
LIAO Dong, YU Haizheng
摘要: 典型的社交推荐方法都受限于对用户的行为建模,如用户与用户之间的社交行为、用户与物品之间的交互行为,而忽略了用户感兴趣的多个物品之间存在的潜在相关性,导致信息丢失。在数据稀疏的推荐场景中,用户行为的稀疏性导致系统可用的信息不足,因此需要引入具有丰富内涵的物品关系作为辅助信息。文中致力于融合用户行为和辅助信息共同建模用户的偏好,以提升推荐的准确性。推荐系统中的数据大多可以表示为图结构,例如用户的社交行为、交互行为和物品关系,可以转化为用户-用户图、用户-物品图和物品-物品图。图神经网络在处理大规模图形数据方面颇有成效,建立一个包含物品关系的图神经网络推荐框架面临巨大的挑战:1)物品-物品关系是隐式的;2)用户-用户图、用户-物品图、物品-物品图,是3种不同类型的图;3)用户与用户、用户与物品、物品与物品之间的联系都具有异质性。为了解决上述问题,文中提出了一种新的基于图神经网络的社交推荐方法(PEVGraphRec),引入了一种数学上的方法显式地构建物品间的连接,该模型能够内在地结合3种不同的图,以便更好地学习用户偏好。最后,提出了注意力机制来综合地考虑不同信息的权重。在3个真实数据集上进行实验,实验结果证明了所提方法的有效性。
中图分类号:
[1]LIAO J,ZHOU W,LUO F,et al.SocialLGN:Light graph convolution network for social recommendation[J].Information Sciences,2022,589:595-607. [2]LIU Z W,FAN Z W,WANG Y,et al.Augmenting Sequential Recommendation with Pseudo-PriorItems via Reversely Pre-training Transformer[C]//Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval.2021. [3]LI M N,TEI K J,FUKAZAWA Y.An Efficient Adaptive Attention Neural Network for Social Recommendation[J].IEEE Access,2020,8:63595-63606. [4]WU L,LI J,SUN P,et al.DiffNet++:A Neural Influence and Interest Diffusion Network for Social Recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(10):4753-4766. [5]WU L,SUN P,HONG R,et al.Collaborative neural social re-commendation[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2021,51(1):464-476. [6]CIALDINI R B,GOLDSTEIN N J.Social influence:Compliance and conformity[J].Annu.Rev.Psychol.2004,55(1):591-621. [7]MCPHERSON M,SMITH-LOVIN L,COOK J M.Birds of aFeather:Homophily in Social Networks[J].Annual Review of Sociology,2001,27(1):415-444. [8]RESNICK P,VARIAN H R.Recommender systems[J].Communications of the ACM,1997,40(3):56-58. [9]TANG J,HU X,LIU H.Social recommendation:a review[J].Social Network Analysis and Mining,2013,3(4):1113-1133. [10]JAMALI M,ESTER M.A matrix factorization technique withtrust propagation for recommendation in social networks[C]//Proceedings of the fourth ACM conference on Recommender systems.ACM,2010:135-142. [11]SALAMAT,LUO X,JAFARI A.HeteroGraphRec:A heterogeneous graph-based neural networks for social recommendations[J].Knowledge-Based Systems,2021,217,106817. [12]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//International Conference onLearning Representations(ICLR).2017. [13]DEFFERRARD M,BRESSON X,VANDERGHEYNST P.Convolutionalneural networks on graphs with fast localized spectral filtering[C]//30th Conference on Neural Information Proces-sing Systems(NIPS 2016).2016:3844-3852. [14]BRUNA J,ZAREMBA W,SZLAM A,et al.Spectralnetworksand locally connected networks on graphs[J].arXiv:1312.6203,2013. [15]ZHANG Y,QI P,MANNING C D.Graph convolutionoverpruned dependency trees improves relation extraction[J].arXiv:1809.10185,2018. [16]ZHANG Y J,DU Y L,MENG X W.Group recommendation system and its application[J].Chinese Journal of Computers,2016,39(4):745-764. [17]LIU X,MEI H Y,WANG J H.Research on Graph Neural Network Recommendation Method[J].Computer Engineering and Applications,2022,58(10):41-49. [18]WANG J C,YUAN F J,CHEN J,et al.Stackrec:Efficient trai-ning of very deep sequential recommender models by iterative stacking.[C]//The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval,Canada.2021:357-366. [19]LINDEN G,SMITH B,YORK J.Amazon.com recommenda-tions:Item-to-item collaborative filtering[J].IEEE Internet Computing,2003,7(1):76-80. [20]DESHPANDE M,KARYPIS G.Item-based top-n recommendation algorithms[J].ACM Transactions on Information Systems(TOIS),2004,22(1):143-177. [21]FAN W,MA Y,LI Q,et al.A Graph Neural Network Framework for Social Recommendations[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(5):2033-2047. [22]XIANG R,NEVILLE J,ROGATI M.Modeling relationshipstrength in online social networks[C]//Proceedings of the 19th International Conference on World Wide Web.ACM,2010:981-990. [23]CHEN M,LI Y H,ZHOU X Z.CoNet:Co-occurrence neural networks for recommendation[J].Future Generation Computer Systems,2021,124(3):308-314. [24]FAN W,MA Y,LI Q,et al.Graph neural networks for social recommendation[C]//Proceedings of the WWW’19.San Francisco,CA,USA,2019:417-426. [25]ZHANG Z P,GUO X L.PEV:New similarity measure applying to Item-based collaborative filtering algorithm[J].Journal of Chinese Computer Systems,2009,30(4):716-720. [26]WU Q,ZHANG H,GAO X,et al,Dual graph attention networks for deep latent representation of multifaceted social effects in recommender systems[C]//The World Wide Web Conference(WWW ’19).2019:2091-2102. [27]LIU Z W,ZHENG L,ZHANG J W.JSCN:Joint spectral convolutional network for cross domain recommendation[C]//2019 IEEE International Conference on Big Data(Big Data).IEEE,2019:850-859. [28]SALAKHUTDINOV R,MNIH A.Probabilistic matrix factorization[C]//Proceedings of the 20th International Conference on Neural Information Processing Systems(NIPS’07).Red Hook,NY,USA,2007:1257-1264. [29]MA H,YANG H X,LYU R M,et al.Sorec:Social recommendation using probabilistic matrix factorization[C]//Proceedings of the 17th ACM conference on Information and Knowledge Management(CIKM’08).New York,USA,2008:931-940. [30]MA H,ZHOU D,LIU C,et al.Recommendersystems with social regularization[C]//Proceedings of the fourthACM international conference on Web Search and Data Mining.ACM,2011:287-296. [31]WU L,SUN P,FU Y,et al.A Neural Influence Diffusion Model for Social Recommendation[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR 2019).ACM,Paris,France,2019:235-244. [32]LI M,TEI K,FUKAZAWA Y.An efficient co-attention neural network for social recommendation[C]//Proceedings of the IEEE/WIC/ACM International Conference on Web Intelligence(WI ’19).Thessaloniki,Greece,2019:34-42. [33]BERG R,KIPF T N,WELLING M.Graph convolutional matrix completion[C]//Proceedings of the KDD’18 Deep Learning Day.London,UK,2018. [34]GROVER A,LESKOWEC J.node2vec:Scalable feature learning for networks[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining(KDD’16).San Francisco,CA,USA,2016:855-864. [35]YANG L,LIU Z,DOU Y,et al.ConsisRec:Enhancing GNN for social recommendation via consistent neighbor aggregation[C]//The 44th International ACM SIGIR Conference on Research and Development in Information Retrieval(SIGIR’21).ACM,2021. |
|