计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 220700200-8.doi: 10.11896/jsjkx.220700200

• 大数据&数据科学 • 上一篇    下一篇

基于遗传算法的生物启发频繁项集挖掘策略

赵学健1,2, 赵可1   

  1. 1 江苏省邮政大数据技术与应用工程中心(南京邮电大学) 南京 210003
    2 宽带无线通信与传感网技术教育部重点实验室(南京邮电大学) 南京 210003
  • 发布日期:2023-11-09
  • 通讯作者: 赵学健(zhaoxj@njupt.edu.cn).
  • 基金资助:
    国家自然科学基金(61972208);中国博士后科学基金(2018M640509)

Bio-inspired Frequent Itemset Mining Strategy Based on Genetic Algorithm

ZHAO Xuejian1,2, ZHAO Ke1   

  1. 1 Technology and Application Engineering Center of Postal Big Data,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
    2 Key Lab of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education,Nanjing University of Posts and Telecommunications,Nanjing 210003,China
  • Published:2023-11-09
  • About author:ZHAO Xuejian,born in 1982,Ph.D,associate professor,is a member of China Computer Federation.His main research interests include data mining and wireless sensor networks.
  • Supported by:
    National Natural Science Foundation of China(61972208) and China Postdoctoral Science Foundation(2018M640509).

摘要: 精确频繁项集挖掘算法时间效率低下,在处理大规模数据集时力不从心。针对该问题,提出一种基于遗传算法的频繁项集挖掘策略GAA-FIM(Genetic Algorithm combining Apriori property based Frequent Itemset Mining),给出了编码操作、交叉操作、变异操作和选择操作的详细操作规则。该算法将遗传算法与精确频繁项集挖掘算法的向下闭包特性融合,改进了传统的有性繁殖的交叉操作方式,将具有良好遗传基因的个体优先加入到新一代候选种群中,并通过变异操作扩展新一代候选种群的规模,以提升算法的时间效率,获取更佳质量的频繁项集。基于合成数据集和真实数据集对GAA-FIM算法的性能进行了验证,实验结果表明GAA-FIM算法与GAFIM和GA-Apriori等算法相比具有更好的时间效率,频繁项集质量也得到了进一步提升。

关键词: 频繁项集, 遗传算法, 生物启发, 向下闭包特性, 数据挖掘

Abstract: Precise frequent itemset mining algorithms usually have a low time efficiency,particularly in processing large-scale data sets.To solve this problem,a frequent itemset mining algorithm,genetic algorithm combining apriori property based frequent itemset mining(GAA-FIM),is proposed,which combines the genetic algorithm and the downward closure property of precise frequent itemset mining algorithms.The detailed operation rules of coding operation,crossover operation,mutation operation and selection operation are described in detail.In GAA-FIM algorithm,individuals with good genes are preferentially added to the latest generation of candidate population through the asexual crossover operation process and the scale of the new generation candidate can be expanded through mutation operation.Therefore,the time efficiency of the proposed algorithm can be improved greatly and the frequent itemsets with better quality can be obtained.The performance of GAA-FIM algorithm is validated based on both synthetic data sets and real data sets.Experimental results show that the proposed GAA-FIM algorithm has a better time efficiency than GAFIM algorithm and GA-Apriori algorithm.Moreover,the quality of mining frequent itemsets has been further improved.

Key words: Frequent itemset, Genetic algorithm, Bio-inspired, Downward closure property, Data mining

中图分类号: 

  • TP391
[1]CHEE C H,JAAFAR J,AZIZ I A,et al.Algorithms for fre-quent itemset mining:a literature review[J].Artificial Intelligence Review,2019,52(4):2603-2621.
[2]VALIULLIN T,HUANG Z,WEI C,et al.A new approximate method for mining frequent itemsets from big data[J].Compu-ter Science and Information Systems,2021,18(3):641-656.
[3]MATA J,ALVAREZ J L,RIQUELME J C.Mining numeric association rules with genetic algorithms[C]//Artificial Neural Nets and Genetic Algorithms.Springer,Vienna,2001:264-267.
[4]MATA J,ALVAREZ J L,RIQUELME J C.An evolutionary algorithm to discover numeric association rules[C]//Proceedings of the 2002 ACM Symposium on Applied Computing.2002:590-594.
[5]ALATA B,AKIN E.An efficient genetic algorithm for automated mining of both positive and negative quantitative association rules[J].Soft Cmputing,2006,10(3):230-237.
[6]YAN X,ZHANG C,ZHANG S.Genetic algorithm-based strategy for identifying association rules without specifying actual minimum support[J].Expert Systems with Applications,2009,36(2):3066-3076.
[7]DJENOURI Y,NOUALI-TABOUDJEMAT N,BENDJOUDI A.Association rules mining using evolutionary algorithms[C]//The 9th International Conference on Bio-inspired Computing:Theories and Applications(BIC-TA 2014).LNCS,2014.
[8]DJENOURI Y,COMUZZI M.Combining Apriori heuristic and bio-inspired algorithms for solving the frequent itemsets mining problem[J].Information Sciences,2017,420:1-15.
[9]BAGUI S,STANLEY P.Mining frequent itemsets from strea-ming transaction data using genetic algorithms[J].Journal of Big Data,2020,7(1):54.
[10]FONG S,WONG R,VASILAKOS A V.Accelerated PSOswarm search feature selection for data stream mining big data[J].IEEE Transactions on Services Computing,2015,9(1):33-45.
[11]KUO R J,LIN S Y,SHIH C W.Mining association rulesthrough integration of clustering analysis and ant colony system for health insurance database in Taiwan[J].Expert Systems with Applications,2007,33(3):794-808.
[12]WU J M T,ZHAN J,LIN J C W.An ACO-based approach to mine high-utility itemsets[J].Knowledge-Based Systems,2017,116:102-113.
[13]KUO R J,CHAO C M,CHIU Y T.Application of particleswarm optimization to association rule mining[J].Applied Soft Computing,2011,11(1):326-336.
[14]LIN J C W,YANG L,FOURNIER-VIGER P,et al.Mininghigh-utility itemsets based on particle swarm optimization[J].Engineering Applications of Artificial Intelligence,2016,55:320-330.
[15]DJENOURI Y,DRIAS H,HABBAS Z.Bees swarm optimization using multiple strategies for association rule mining[J].International Journal of Bio-Inspired Computation,2014,6(4):239-249.
[16]HERAGUEMI K E,KAMEL N,DRIAS H.Multi-swarm batalgorithm for association rule mining using multiple cooperative strategies[J].Applied Intelligence,2016,45(4):1021-1033.
[17]CAO H,YANG S,WANG Q,et al.A Closed Itemset Property based Multi-objective Evolutionary Approach for Mining Frequent and High Utility Itemsets[C]//2019 IEEE Congress on Evolutionary Computation(CEC).Wellington,New Zealand,2019:3356-3363.
[18]DJENOURIY,DJENOURI D,BELHADI A,et al.A Novel Pa-rallel Framework for Metaheuristic-based Frequent Itemset Mining[C]//2019 IEEE Congress on Evolutionary Computation(CEC).Wellington,New Zealand,2019:1439-1445.
[19]TIMUR V,HUANG Z J,WEI C,et al.A new approximatemethod for mining frequent itemsets from big data[J].Compu-ter Science and Information Systems,2021,18(3):641-656.
[20]RAMESH D F,JEYASUTHA M.A Novel Fuzzy FrequentItemsets Mining Approach for the Detection of Breast Cancer[J].International Journal of Information Retrieval Research,2021,11(1):36-53.
[21]FATEMI S M,HOSSEINI S M,KAMANDI A,et al.CL-MAX:a clustering-based approximation algorithm for mining maximal frequent itemsets[J].International Journal of Machine Learning and Cybernetics,2021,12:365-383.
[22]YU X,ZHAO J,WANG H,et al.A model of mining approximate frequent itemsets using rough set theory[J].International Journal of Computational Science and Engineering(IJCSE),2019,19(1):71-82.
[23]WU T,LIN J,YUN J,et al.An efficient algorithm for fuzzy fre-quent itemset mining[J].Journal of Intelligent & Fuzzy Systems,2020,38(5):5787-5797.
[24]VALIULLIN T,HUANG Z,WEI C,et al.A new approximate method for mining frequent itemsets from big data[J].ComputerScience and Information Systems,2021,18(3):641-656.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!