计算机科学 ›› 2023, Vol. 50 ›› Issue (11A): 221000184-10.doi: 10.11896/jsjkx.221000184

• 信息安全 • 上一篇    下一篇

一种安全高效的去中心化移动群智感知激励模型

周玉莹1, 马苗1, 申琪琪1, 任杰1, 张明瑞1,2, 杨波1   

  1. 1 陕西师范大学计算机科学学院 西安 710119
    2 华东师范大学软件工程学院 上海 200062
  • 发布日期:2023-11-09
  • 通讯作者: 马苗(mmthp@snnu.edu.cn)
  • 作者简介:(s1210qq@163.com)
  • 基金资助:
    国家自然科学基金(U2001205,62377031);中央高校基本科研业务费专项资金(2021CSLY021,GK202007033);陕西省重点研发计划(2023-YBGY-241).

Safe Efficient and Decentralized Model for Mobile Crowdsensing Incentive

ZHOU Yuying1, MA Miao1, SHEN Qiqi1, REN Jie1, ZHANG Mingrui1,2, YANG Bo1   

  1. 1 School of Computer Science,Shaanxi Normal University,Xi'an 710119,China
    2 Software Engineering Institute,East China Normal University,Shanghai 200062,China
  • Published:2023-11-09
  • About author:ZHOU Yuying,born in 1997,master.Her main research interests include blockchain technology and mobile crowdsensing.
    MA Miao,born in 1977,Ph.D,professor,Ph.D supervisor.Her recent main research interests include video analysis,mobile crowdsensing and smart education.
  • Supported by:
    National Natural Science Foundation of China(U2001205,62377031),Fundamental Research Funds for the Central Universities(2021CSLY021,GK202007033) and Key Research and Development Program in Shaanxi Province(2023-YBGY-241).

摘要: 针对现有群智感知激励模型因依赖中央机构而存在的信任安全隐患问题和如何高效地完成感知任务问题,提出一种安全高效的去中心化群智感知激励模型。该模型利用区块链技术实现去中心化的用户管理,通过参与者控制智能合约PCSC和任务控制智能合约TCSC,完成任务发布者、参与者和矿工之间的交互和链上交易,实现任务发布、参与者优选和数据质量评估及报酬支付。在参与者优选环节,提出基于BP神经网络的“任务-参与者集合”匹配策略,即分别利用历史数据中参与者的时间和位置属性,找出最适合当前任务的参与者集合,并采用“对胜出者给予报酬、信誉双激励,对愿意参加的非胜出者给予信誉补偿,对适合当前任务而连续不参与者给予信誉惩罚”的自适应信誉更新机制。安全性分析和在国际公开基准数据集Brightkite上对所提模型在任务完成率、感知数据质量、参与者收益及用户参与度方面的高效性测试结果以及在区块链上用Solidity语言对PCSC和TCSC合约的有效性测试结果,均表明所提模型是一种安全高效的去中心化群智感知激励模型。

关键词: 移动群智感知, BP神经网络, 参与者优选策略, 区块链, 信誉管理

Abstract: In order to solve the problem of trust safety and inefficient perception task execution in the existing mobile crowdsen-sing incentive model,this paper proposes a safe efficient and decentralized model for mobile crowdsensing incentive.Employing blockchain to decentralize user management,the model completes the interaction and chain transaction among task publisher,participant and miner,realizes task publishing,participant selection,data quality evaluation and payment through PCSC(participant control smart contract) and TCSC(task control smart contract).In the process of participant selection,this paper proposes a “task-participants” matching mechanism based on BP neural network,which refers the time-location attribute of participants in historical data respectively to find out the most suitable participants for the current task.Then an adaptive reputation updating mechanism is suggested,that is,“giving reward and reputation incentive to the winner,giving reputation compensation to the non-winner who is willing to participate,and giving reputation punishment to the continuous non-participants who are suitable for the current task”.Security analysis and experimental results show that the proposed incentive model is safe,efficient and decentra-lized,since it not only can significantly improve the task completion rate,perceived data quality,participants’ benefits and user participation on the international open benchmark Brightkite dataset,but also can work on blockchain due to the efficiency of PCSC and TCSC using Solidity.

Key words: Mobile crowdsensing, Back propagation neural network, Participant selection strategy, Blockchain, Reputation mana-gement

中图分类号: 

  • TP391
[1]CAPPONI A,FIANDRINO C,KANTARCI B,et al.A surveyon mobile crowdsensing systems:Challenges,solutions,and opportunities[J].IEEE Communications Surveys and Tutorials,2019,21(3):2419-2465.
[2]LI M,WENG J,YANG A,et al.CrowdBC:A blockchain-baseddecentralized framework for crowdsourcing[J].IEEE Transactions on Parallel and Distributed Systems,2019,30(6):1251-1266.
[3]WANG J,WANG L,WANG Y,et al.Task allocation in mobile crowd sensing:State-of-the-art and future opportunities[J].IEEE Internet of Things Journal,2018,5(5):3747-3757.
[4]WEI K,HUANG K,WU Y,et al.High-performance uavcrowdsensing:A deep reinforcement learning approach[J].IEEE Internet of Things Journal,2022,19(9):18487-18499.
[5]WU Y,ZENG J R,PENG H,et al.Survey on incentive mechanisms for crowd sensing[J].Journal of Software,2016,27(8):2025-2047.
[6]WANG J,HUANG Y,ZHAO G S,et al.The incentive model for mobile crowd sensing oriented to differences in mission costs[J].Journal of Electronics and Information Technology,2019,41(6):1503-1509.
[7]DUAN L,KUBO T,SUGIYAMA K,et al.Incentive mechanismsfor smartphone collaboration in data acquisition and distributed computing[C]//Proceedings IEEE INFOCOM.2012:1701-1709.
[8]ZHANG H,LIU B,SUSANTO H,et al.Incentive mechanismfor proximity-based Mobile Crowd Service systems[C]//Proceedings of the 2016 IEEE Conference on Computer Comunications.2016:1-9.
[9]ZHANG S,WU J,LU S.Minimum makespan workload dissemination in DTNs:Making full utilization of computational surplus around[C]//Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing.2013:293-296.
[10]CHEUNG M H,SOUTHWELL R,HOU F,et al.Distributedtime-sensitive task selection in mobile crowdsensing[C]//Proceedings of the ACM International Symposium on Mobile Ad Hoc Networking and Computing.2015:157-166.
[11]BENTOV I,KUMARESAN R.How to use bitcoin to design fair protocols[C]//Proceedings of Annual International Cryptology Conference.2014:421-439.
[12]GERVAIS A,KARAME G O,WÜST K,et al.On the security and performance of proof of work blockchains[C]//Proceedings of the ACM Conference on Computer and Communications Security.2016:3-16.
[13]ANDRYCHOWICZ M,DZIEMBOWSKI S,MALINOWSKI D,et al.Secure multiparty computations on bitcoin[J].Communications of the ACM,2016,59(4):76-84.
[14]ANDRYCHOWICZ M,DZIEMBOWSKI S,MALINOWSKI D,et al.Fair two-party computations via bitcoin deposits[C]//Proceedings of International Conference on Financial Cryptography and Data Security.2014:105-121.
[15]KUMARESAN R,BENTOV I.How to use bitcoin to incentivize correct computations[C]//Proceedings of the ACM Conference on Computer and Communications Security.2014:30-41.
[16]HE Y H,LI M R,LI H,et al.Incentive mechanism based on blockchain in swarm intelligence perception application[J].Journal of Computer Research and Development,2019,56(3):544-554.
[17]ZHU S D,HU H,LI Y S.zkCrowd:A hybrid blockchain-based crowdsourcing platform[J].IEEE Transactions on Industrial Informatics,2020,16(6):4196-4205.
[18]SHANNON C E.A mathematical theory of communication[J].ACM Sigmobile Mobile Computing and Communications Review,2001,5(1):3-55.
[19]REDDY S,ESTRIN D,SRIVASTAVA M.Recruitment framework for participatory sensing data collections[C]//Interna-tional Conference on Pervasive Computing.2010:138-155.
[20]YANG D,XUE G,FANG X,et al.Crowdsourcing to smart-phones:Incentive mechanism design for mobile phone sensing[C]//Proceedings of the Annual International Conference on Mobile Computing and Networking.2012:173-184.
[21]JAIMES L G,VERGARA-LAURENS I,LABRADOR M A.A location-based incentive mechanism for participatory sensing systems with budget constraints[C]//Proceedings of the IEEE International Conference on Pervasive Computing and Communications.2012:103-108.
[22]ZHANG D,XIONG H,WANG L,et al.CrowdRecruiter:Selecting participants for piggyback crowdsensing under probabilistic coverage constraint[C]//Proceedings of the ACM International Joint Conference on Pervasive and Ubiquitous Computing.2014:703-714.
[23]NAN W Q,GUO B,CHEN H H,et al.Dynamic incentive modelof group intelligence perception based on multiple interactions across spaces[J].Chinese Journal of Computers,2015,38(12):2412-2425.
[24]LIU Y,GUO B,WU W L,et al.Research on the optimizationmethod of multi task participants in mobile swarm intelligence perception[J].Chinese Journal of Computers,2017,40(8):1872-1887.
[25]ZHANG M R,WANG T,YANG B.A Blockchain-Based Framework for Crowd Intelligence[J].Journal of Cryptologic Research,2021,8(2):248-259.
[26]ZHOU Y Y.Research on mobile crowd sensing incentive method based on blockchain[D].Xi’an:Shaanxi Normal University,2022.
[27]LI X,JIANG P,CHEN T,et al.A survey on the security of blockchain systems[J].Future Generation Computer Systems,2020,107:841-853.
[28]MYERS A,LESKOVEC J.Complex networks standard public data sets[OL].[2021-03-15].http://snap.stanford.edu/data/ loc-brightkite.html.
[29]LEE J S,HOH B.Dynamic pricing incentive for participatorysensing[J].Pervasive and Mobile Computing,2010,6(6):693-708.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!