计算机科学 ›› 2014, Vol. 41 ›› Issue (1): 111-115.

• 2013 CCF人工智能会议 • 上一篇    下一篇

基于改进尺度不变特征的图像局域几何配准研究

孙统风,丁世飞   

  1. 中国矿业大学计算机科学与技术学院 徐州221116;中国矿业大学计算机科学与技术学院 徐州221116
  • 出版日期:2018-11-14 发布日期:2018-11-14
  • 基金资助:
    本文受国家重点基础研究发展计划(973)项目(2013CB329502),国家自然科学基金(41074003,7)资助

Image Local Geometric Registration Based on Improved Scale Invariant Features

SUN Tong-feng and DING Shi-fei   

  • Online:2018-11-14 Published:2018-11-14

摘要: 针对图像配准容易产生误配准、漏配准的问题,提出了基于改进尺度不变特征的图像局域几何配准。该方法改进了尺度不变特征,通过构建边缘尺度空间设计了尺度不变边缘特征变换,融合了尺度不变特征点和尺度不变边缘。以尺度不变特征为基础,搜寻图像间的局域图像变换,实现图像局域几何配准。实验表明,SIFT特征点和边缘信息互补能够提供更多的配准信息并减少错误配准;该方法对尺度、噪声、形变、光照等不敏感,能够配准移动目标,真实地反映图像的配准状况。

关键词: 尺度不变边缘特征变换,尺度不变特征变换,图像变换,局域几何配准

Abstract: Aiming at the problems that the existing image registrations may trigger inaccurate registrations or miss some registrations,an image local geometric registration based on improved scale invariant features was proposed.The approach improves scale invariant features,designs SI(E)FT (scale invariant edge feature transform) by constructing edge scale space and combines scale invariant feature points and scale invariant edges.Based on the improved scale invariant features,the local transforms between two images are searched to implement image local geometric registration.Experiments show that the complementary combination of SIFT points and edges provides more registration information and reduces registration errors,and the approach is insensitive to scale,noise,deformation,light,etc.,can register mo-ving objects and truly reflects image registration status.

Key words: Scale invariant edge feature transform,Scale invariant feature transform,Image transform,Local geometric registration

[1] Lowe D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110
[2] Mikolajczyk K,Schmid C.A performance evaluation of local descriptors[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(10):1615-1630
[3] Awrangjeb M,Lu G.Techniques for efficient and effective tra-nsformed image identification[J].Journal of Visual Communication and Image Representation,2009,20(8):511-520
[4] Krish K,Heinrich S,Snyder W E,et al.Global registration of overlapping images using accumulative image features[J].Pattern Recognition Letters 31,2010:112-118
[5] Boufama B,Jin K.Towards a fast and reliable dense matching algorithm[C]∥Proc.of Vision Interface.Calgary,2002:178-185
[6] Cho M,Park H.A robust keypoints matching strategy forSIFT:an application to face recognition[J].Lecture Notes in Computer Science,2009,5863:716-723
[7] Moravec H P.Toward automatic visual obstacle avoidance[C]∥Proc.5th Int.Joint Conf.Artificial Intelligence.Cambridge,USA,1977:584
[8] Forstner W,Gulch E.A fast operator for detection and precise location of distinct points,corners and centres of circular features[C]∥Intercommission Conference on Fast Processing of Photogrammetric Data.Interlaken,Switzerland,1987:281-305
[9] Harris C,Stephens M.A combined corner and edge detector[C]∥Proceedings of the 4th Alvey Vision Conference.1988:147-162
[10] Bay H,Tuytelaars T,Van Gool L.SURF:speeded up robustfeatures[C]∥Proc.of the 9th European Conference on ComputerVision.Graz,Austria:Springer,2006:404-417
[11] Ke Y,Sukthankar R.PCA-SIFT:a more distinctive representation for local image descriptors[C]∥Proc.of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.Washington D C,USA:IEEE,2004:506-513
[12] Smith S M,Brady J M.SUSAN-a new approach to low level ima-ge processing[J].International Journal of Computer Vision,1997,23(1):45-78
[13] Mokharian F,Suomela R.Robust image corner detection th-rough curvature scale space[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(12):1376-1381
[14] Mokharian F,Suomela R.Robust image corner detection th-rough curvature scale space[J].IEEE Trans on Pattern Analysis and Machine Intelligence,1998,20(12):1376-1381
[15] 倪国强,刘琼.多源图像配准技术分析与展望[J].光电工程,2004,1(9):1-6
[16] Georgia Institute of Technology.Georgia tech face image database[DB/OL].http://www.anefian.com/face_reco.htm,2013

No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!