计算机科学 ›› 2024, Vol. 51 ›› Issue (3): 235-243.doi: 10.11896/jsjkx.221200097

• 人工智能 • 上一篇    下一篇

TMGAT:类型匹配约束的图注意力网络

孙首男, 汪璟玢, 吴仁飞, 游常凯, 柯禧帆, 黄皓   

  1. 福州大学计算机与大数据学院 福州350108
  • 收稿日期:2022-12-14 修回日期:2023-04-13 出版日期:2024-03-15 发布日期:2024-03-13
  • 通讯作者: 汪璟玢(wjb@fzu.edu.cn)
  • 作者简介:(954752598@qq.com)
  • 基金资助:
    国家自然科学基金(61672159);福建省自然科学基金(2021J01619)

TMGAT:Graph Attention Network with Type Matching Constraint

SUN Shounan, WANG Jingbin, WU Renfei, YOU Changkai, KE Xifan, HUANG Hao   

  1. College of Computer and Data Science,Fuzhou University,Fuzhou 350108,China
  • Received:2022-12-14 Revised:2023-04-13 Online:2024-03-15 Published:2024-03-13
  • About author:SUN Shounan,born in 1998,postgra-duate.His main research interests include knowledge graph,relation rea-soning and knowledge representation.WANG Jingbin,born in 1973,master,professor,is a member of CCF(No.25996M).Her main research interests include knowledge graph,relation reasoning,distributed data management and knowledge repesentation.
  • Supported by:
    National Natural Science Foundation of China(61672159) and Natural Science Foundation of Fujian Province,China(2021J01619).

摘要: 近年来利用图结构来解决知识图补全(KGC)问题取得了不错的进展,其中图神经网络(GNNs)通过聚合实体的局部邻域信息来不断更新中心实体的表示,图注意力网络(GATs)使用注意力机制有侧重地聚合邻居,以获得更准确的中心实体表示。这些模型虽然在KGC中取得了不错的性能,但它们都忽略了中心实体的类型信息,仅仅使用邻域信息来计算注意力,将导致计算出来的注意力不够精准。针对这些问题,文中提出了一种类型匹配约束的图注意力网络(TMGAT),该方法通过计算中心实体类型对每个邻域关系的注意力,来得到实体类型-关系级别的注意力,以进一步计算出中心实体与各邻域关系的类型匹配度,再通过邻域关系及对应的邻居实体,结合类型匹配度计算实体-关系级别的注意力,得到邻域节点对中心实体的最终注意力。使用类型匹配度来约束传统的注意力机制,提升注意力机制的准确性,得到更加精准的中心实体嵌入,进而提升知识图补全的准确性。截至目前,文中提出的TMGAT是第一个在GATs中结合显式类型进行知识图补全任务的模型。文中加工了两个现有的数据集,使数据集中每个实体都拥有若干个类型,以验证TMGAT模型的性能。最后,实验部分展现了TMGAT在知识补全任务中优秀的竞争力,并研究了类型个数对模型性能的影响。

关键词: 知识图谱, 知识图补全, 图结构, 图注意力机制, 类型信息

Abstract: The graph structure has recently been employed to solve the KGC problem of knowledge graph completion.The graph neural network(GNNs) constantly updates the representation of the central entity by aggregating the entity's local neighborhood information,whereas the graph attention network(GATs) focuses on aggregating the neighbors to obtain a more accurate representation of the central entity by using the attention mechanism.Although these models performed well in KGC,they all neglect the central entity's type information and only use neighborhood information to calculate attention,resulting in inaccurately mea-sured attention.This paper proposes a type-matching constrained graph attention network(TMGAT) to address these issues.The entity type-relation level of attention is derived by calculating the attention of the central entity type to each neighborhood relationship,and the type matching degree between the central entity and each neighborhood connection is further determined.The entity-relation level attention is then determined by combining the type matching degree through the neighborhood relation and the corresponding neighbor entity,and the final attention of the neighborhood node to the central entity is obtained.The type matching degree is utilized to constrain the traditional attention mechanism,increase attention mechanism accuracy,obtain more accurate central entity embedding,and subsequently improve knowledge graph completion accuracy.The proposed TMGAT is the first model of knowledge graph completion task combined with explicit type in GATs up to this point.To validate the TMGAT model's performance,two existing data sets are processed so that each entity in the data set has several types.Finally,experiment demonstrates TMGAT's high competitiveness in knowledge completion tasks and the effect of the number of types on the model's performance analyzed.

Key words: Knowledge graph, Knowledge graph completion, Graph structure, Graph attention mechanism, Type infomation

中图分类号: 

  • TP391
[1]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250.
[2]MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41.
[3]SUCHANEK F M,KASNECI G,WEIKUM G.Yago:a core of semantic knowledge[C]//Proceedings of the 16th International Conference on World Wide Web.2007:697-706.
[4]AUER S,BIZER C,KOBILAROV G,et al.Dbpedia:A nucleus for a web of open data[M]//The Semantic Web.Berlin,Heidelberg:Springer,2007:722-735.
[5]BORDES A,CHOPRA S,WESTON J.Question answering with subgraph embeddings[J].arXiv:1406.3676,2014.
[6]ZHANG F,YUAN N J,LIAN D,et al.Collaborative knowledge base embedding for recommender systems[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2016:353-362.
[7]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//Euro-pean Semantic Web Conference.Cham:Springer,2018:593-607.
[8]XIE R,LIU Z,SUN M.Representation Learning of Knowledge Graphs with Hierarchical Types[C]//IJCAI.2016:2965-2971.
[9]MA S,DING J,JIA W,et al.Transt:Type-based multiple embedding representations for knowledge graph completion[C]//Joint European Conference on Machine Learning and Knowledge Discovery in Databases.Cham:Springer,2017:717-733.
[10]HAO J,CHEN M,YU W,et al.Universal representation lear-ning of knowledge bases by jointly embedding instances and ontological concepts[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mi-ning.2019:1709-1719.
[11]JAIN P,KUMAR P,CHAKRABARTI S.Type-sensitive know-ledge base inference without explicit typesupervision[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics(Volume 2:Short Papers).2018:75-80.
[12]NIU G,LI B,ZHANG Y,et al.AutoETER:Automated entitytype representation for knowledge graph embedding[J].arXiv:2009.12030,2020.
[13]DETTMERS T,MINERVINI P,STENETORP P,et al.Convolutional 2d knowledge graph embeddings[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2018.
[14]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[J].Advances in Neural Information Processing Systems,2013,26(2):2787-2795.
[15]WANG Z,ZHANG J,FENG J,et al.Knowledge graph embedding by translating on hyperplanes[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2014.
[16]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graph embedding by relational rotation in complex space[J].arXiv:1902.10197,2019.
[17]NICKEL M,TRESP V,KRIEGEL H P.A three-way model for collective learning on multi-relational data[C]//ICML.2011.
[18]YANG B,YIH W,HE X,et al.Embedding entities and relations for learning and inferencein knowledge bases[J].arXiv:1412.6575,2014.
[19]TROUILLON T,WELBL J,RIEDEL S,et al.Complex embeddings for simple link prediction[C]//International Conference on Machine Learning.PMLR,2016:2071-2080.
[20]SHANG C,TANG Y,HUANG J,et al.End-to-end structure-aware convolutional networks for knowledge base completion[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:3060-3067.
[21]VASHISHTH S,SANYAL S,NITIN V,et al.Composition-based multi-relational graphconvolutional networks[J].arXiv:1911.03082,2019.
[22]NATHANI D,CHAUHAN J,SHARMA C,et al.Learning attention-based embeddings for relation prediction in knowledge graphs[J].arXiv:1906.01195,2019.
[23]ZHAO X,JIA Y,LI A,et al.Target relational attention-oriented knowledge graph reasoning[J].Neurocomputing,2021,461:577-586.
[24]LI R,CAO Y,ZHU Q,et al.How does knowledge graphembed-ding extrapolate to unseen data:a semantic evidence view[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:5781-5791.
[25]SUN Z,VASHISHTH S,SANYAL S,et al.A re-evaluation of knowledge graph completion methods[J].arXiv:1911.03903,2019.
[26]VASHISHTH S,SANYAL S,NITIN V,et al.Interacte:Improving convolution-based knowledge graph embeddings by increa-sing feature interactions[C]//Proceedings of the AAAI Confe-rence on Artificial Intelligence.2020:3009-3016.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!