计算机科学 ›› 2024, Vol. 51 ›› Issue (5): 267-276.doi: 10.11896/jsjkx.230300216
顾楚梅1,2,3, 曹建军1,2, 王保卫3, 徐雨芯1,2,3
GU Chumei1,2,3, CAO Jianjun1,2, WANG Baowei3, XU Yuxin1,2,3
摘要: 为提高辐射源个体识别的准确率和运算效率,提出了一种基于混合式特征选择的辐射源个体识别。封装式特征选择方法分类正确率高,但计算复杂度高,处理高维数据时效率低。嵌入式特征选择方法计算复杂度低,但依赖于特定分类器。针对上述问题,综合封装式和嵌入式特征选择方法的特点,首先对信号数据使用3种嵌入式方法(随机森林、XGBoost和Ligh-tGBM)初选特征,分别得到随机森林子集、XGBoost子集和LightGBM子集。然后使用封装式方法对初选后得到的子集进行第二次降维,其中搜索策略分别使用序列后向搜索策略和蚁群优化算法,分类算法使用LightGBM。混合式方法共得到6种特征选择模型,通过对比各个模型得到的分类正确率和最优子集中的特征个数,确定最佳混合式特征选择模型。
中图分类号:
[1]ZHANG M,LUO Z H,HUANG J G,et al.A fingerprint extraction method based on I/Q imbalance[J].Acta Electronica Sinica,2020,48(4):717-722. [2]TANG Z,LEI Y K.Method of individual communication transmitter identification based on maximum correntropy[J].Journal on Communication,2016,37(12):1-5. [3]LIU J F,YU H Y,DU J P,et al.Specific emitter identification under dynamic noise based on domain adaptation[J].Journal of Signal Processing,2021,37(6):1000-1007. [4]DASGUPTA A,DRINEAS P,HARB B,et al.Feature selection methods for text classification[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.ACM,2007:230-239. [5]HE T,HU J,XIA P,et al.Feature selection of Emg signal based on ReliefF algorithm and genetic algorithm[J].Journal of Shanghai Jiao Tong University,2016,50(2):204-208. [6]WOZNICA A,NGUYEN P,KALOUSIS A.Model mining for robust feature selection[C]//Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2012:913-921. [7]TANG C,ZHENG X,LIU X W,et al.Cross-view locality preserved diversity and consensus learning for multi-view unsupervised feature selection[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(10):4705-4716. [8]JOHANNES H,MARTIN P,KLAUS B,et al.Leveraging mo-del inherent variable importance for stable online feature selection[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2020:1478-1488. [9]LI H,PUN C M,XU P,et al.A hybrid feature selection based on a discrete artificial beecolony for Parkinson's diagnosis[J].ACM Transactions on Internet Technology,2021,21(3):1-22. [10]SHARMA D K,VARSHNEY R P,GARY A,et al.Hybrid feature selection method with multi-objective grey wolf optimizer for high dimension data[C]//Proceedings of the 9th Conference on Computing for Sustainable Global Development(INDIACom).IEEE,2022:854-859. [11]LU X Q,HE W D,LU Q Q,et al.Hybrid filter-wrapper feature selection using water wave optimization for financial crisis prediction in enterprises[C]//Proceedings of the 16th Conference on Intelligent System and Knowledge(ISKE).IEEE,2021:193-199. [12]ALYASIRI O M,CHEAH Y,ABASI A K.Hybrid filter-wrapper text feature selection technique for text classification[C]//Proceedings of the International Conference on Communication and Information Technology(ICICT).IEEE,2021:80-86. [13]XU Z Z,SHEN D R,NIE T Z,et al.Hybrid features election algorithm combining information gain ratio and genetic algorithm[J].Journal of Software,2022,33(3):1128-1140. [14]MCNAMARA Q,VEGA A D L,YARKONI T.Developing acomprehensive framework for multimodal feature extraction[C]//International Conference on Knowledge Discovery and Data Mining(SIGKDD).ACM,2017:1567-1574. [15]CAO J J,ZHANG P L,ZHANG Y T,et al.Feature extraction of an engine cylinder head vibration signal based on lifting wavelet package transformation[J].Journal of Vibration and Shook,2008,27(2):34-37. [16]XU Z L,JIN R,YE J P,et al.Non-monotonic feature selection[C]//Proceedings of the 26th Annual International Conference on Machine Learning.ACM,2009:1145-1152. [17]JUN Y J,LEAU Y,ALIAS S,et al.A multi-filter feature selection in detecting distributed denial-of-service attack[C]//Proceedings of the 3rd International Conference on Telecommunications and Communication Engineering.ACM,2019:57-62. [18]FAN X,FENG Z Q,YANG X H,et al.Hazw weather recognition based on multiple features and random forest[C]//Procee-dings of International Conference on Security,Pattern Analysis,and Cybernetics.IEEE,2018:485-488. [19]FENG D D,DENG Z F,WANG T X,et al.Identification ofdisturbance sources based on random forest model[C]//Proceedings of International Conference on Power System Techno-logy.IEEE,2018:3370-3375. [20]ZHAI Y B,ZHENG X H.Random forest traffic classification method in SDN[C]//Proceedings of International Conference on Cloud Computing,Big Data and Blockchain.IEEE,2018:1-5. [21]CHEN T,GUESTRIN C.XGBoost:A scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.ACM,2016:785-794. [22]LI L,LI C,WU Y,et al.Spectroscopy-based food internal quality evaluation with XGBoost algorithm[C]//APWeb-WAIM 2018.Springer,2018:56-64. [23]LI Z S,YAO X,LIU Z G,et al.Feature selection algorithmbased on LightGBM[J].Journal of Northeastern University(Natural Science),2021,42(12):1688-1695. [24]YUAN J,RAO Z,LIN H,et al.Classification of Chinese dialect regions from L2 English speech[C]//International Conference on Acoustics,Speech and SP(ICASSP).IEEE,2019:8117-8121. [25]SHEN S,QIAN Y,ZHENG J,et al.Accurately predicting circ-RNA-disease associations using variational graph auto-encoders and LightGBM[C]//International Conference on Bioinformatics and Biomedicine(BIBM).Piscataway,IEEE,2021:522-527. [26]CAO J J,ZHANG P L,WANG Y X,et al.Graph-based ant system for subset problems[J].Journal of System Simulation,2008,20(22):6146-6150. [27]CHEN Z,LV N.Network intrusion detection model based onRandom Forest andXGBoost[J].Journal of Signal Processing,2020,36(7):1055-1064. [28]CAO J J,GU C M,WANG B W,et al.Specific emitter identification based on ACO-XGBoost [C]//APWeb-WAIM 2022.Springer,2023:76-90. [29]GU C M,CAO J J,WANG B W,et al.Specific emitter identification of LightGBM based on colony parameters optimization[J].Journal of Computer Engineering and Science,2023,45(1):9-18. |
|