计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 111-117.doi: 10.11896/jsjkx.231000140
韩宇捷1, 徐志杰1, 杨定裕2, 黄波1, 郭健美1
HAN Yujie1, XU Zhijie1, YANG Dingyu2, HUANG Bo1, GUO Jianmei1
摘要: 在大规模云生产环境中在线评估数据库效能,对云厂商进一步优化云成本至关重要。为了评估云数据库的使用效能,提出了一种数据驱动的、基于计算与存储指标融合的云数据库效能评估方法CDES。该方法根据云数据库实例负载行为和性能画像,从计算和存储两方面选取影响云数据库成本与效能的主要指标,再结合云监控平台采集的数据,评估云数据库实例与集群的线上实际使用效能。基于CDES评估结果,进一步提出了云数据库效能优化的治理方案,提供效能优化建议,引导用户减少闲置资源。CDES已被部署在某大型互联网企业生产环境中,并用于其OLTP云数据库产品的效能评价。实验结果表明,所提方法能有效评估超过5 000个云数据库实例的集群的效能并引导治理,单位业务量下实例最高能节省40.74%的成本。
中图分类号:
[1]AL SHEHRI W.Cloud Database Database as a Service[J].International Journal of Database Management Systems,2013,5(2):1-12. [2]Flexera.2023 state of the cloud[EB/OL].https://info.flexera.com/CM-REPORT-State-of-the-Cloud/. [3]Amazon Web Service,Inc.AWS Billing Console[EB/OL].(2023-05-29)[2023-05-29].https://aws.amazon.com/cn/aws-cost-management/aws-billing/. [4]Microsoft Inc.Microsoft CostManagement[EB/OL].(2023-05-29)[2023-05-29].https://azure.microsoft.com/zh-cn/produ-cts/cost-management/. [5]VAN RENEN A,LEIS V.Cloud Analytics Benchmark[J].Proceedings of the VLDB Endowment,2023,16(6):1413-1425. [6]HWANG K,BAI X,SHI Y,et al.Cloud Performance Modeling with BenchmarkEvaluation of Elastic Scaling Strategies[J].IEEE Transactions on Parallel and Distributed Systems,2016,27(1):130-143. [7]VERBITSKI A,GUPTA A,SAHA D,et al.Amazon Aurora:Design Considerations for High Throughput Cloud-Native Relational Databases[C]//Proceedings of the 2017 ACM International Conference on Management of Data.2017. [8]VERBITSKI A,GUPTA A,SAHA D,et al.Amazon Aurora:On Avoiding Distributed Consensus for I/Os,Commits,and Membership Changes[C]//Proceedings of the 2018 International Conference on Management of Data.2018. [9]DEPOUTOVITCH A,CHEN C,CHEN J,et al.Taurus database:how to be fast,available,and frugal in the cloud[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.2020. [10]Alibaba Cloud.Databases[EB/OL].(2023-06-13)[2023-06-13].https://www.alibabacloud.com/en/product/databases. [11]CAI B,ZHAO L,ZHOU X,et al.On evaluatingthe resourceusage effectiveness of Multi-tenant cloud Storage[J].Journal of Systems Architecture,2019,98:403-412. [12]XIAO W,BAO W,ZHU X,et al.Cost Minimization Method for Multi-Source Big Data Processing in Clouds[J].Journal of Software,2017,28(3):544-562. [13]ANTONOPOULOS P,BUDOVSKI A,DIACONU C,et al.Socrates:The New SQL Server in the Cloud[C]//Proceedings of the 2019 International Conference on Management of Data.2019. [14]CHAWLA S,DEEP S,KOUTRISW P,et al.Revenue maximization for query Pricing[J].Proceedings of the VLDB Endowment,2019,13(1):1-14. [15]MÜLLER I,MARROQUÍN R,ALONSO G.Lambada:Interactive Data Analytics on Cold Data Using Serverless Cloud Infrastructure[C]//Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data.2020:115-130. [16]DUAN S,THUMMALA V,BABU S.Tuning database configuration parameterswith ITuned[J].Proceedings of the VLDB Endowment,2009,2(1):1246-1257. [17]ZHANG J,LIU Y,ZHOU K,et al.An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning[C]//Proceedings of the 2019 International Conference on Management of Data.2019. [18]VAN AKEN D,PAVLO A,GORDON G J,et al.Automatic Database Management System Tuning Through Large-scale Machine Learning[C]//Proceedings of the 2017 ACM Interna-tional Conference on Management of Data.2017. [19]ZHU Y,LIU J,GUO M,et al.BestConfig:Tapping the Per-formance Potential of Systems via Automatic Configuration Tuning[C]//Proceedings of the 2017 Symposium on Cloud Computing.2017. [20]CAO R,BAO L,CUI J,et al.Survey of Approaches to Parameter Tuning for Database Systems[J].Journal of Computer Research and Development,2023,60(3):635-653. [21]ZHANG J,LIU Y,ZHOU K,et al.An End-to-End Automatic Cloud Database Tuning System Using Deep Reinforcement Learning[C]//Proceedings of the 2019 International Confe-rence on Management of Data.2019. [22]GREENBERG A,HAMILTON J,MALTZ D A,et al.The cost of a Cloud[J].ACM SIGCOMM Computer Communication Review,2008,39(1):68-73. [23]LANG W,SHANKAR S,PATEL J M,et al.Towards Multi-Tenant Performance SLOs[J].IEEE Transactions on Know-ledge & Data Engineering,2014,26(6):1447-1463. [24]MOELLER J,YE Z,LIN K,et al.Toto:Benchmarking the Efficiency of a Cloud Service[C]//Proceedings of the 2021 International Conference on Management of Data.2021. [25]Alibaba Cloud.ESSDs[EB/OL].(2023-06-13)[2023-06-13].https://www.alibabacloud.com/help/en/ecs/user-guide/essds. [26]MA M,YIN Z,ZHANG S,et al.Diagnosing root causes of inter-mittent slow queries in cloud Databases[J].Proceedings of the VLDB Endowment,2020,13(8):1176-1189. |
|