计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 135-143.doi: 10.11896/jsjkx.230300194
武慧囡1, 邢红杰1, 李刚2,3
WU Huinan1, XING Hongjie1, LI Gang2,3
摘要: 随着数据维度和规模的不断增加,基于深度学习的异常检测方法取得了优异的检测性能,其中深度支持向量数据描述(Deep SVDD)得到了广泛应用。然而,要缓解超球崩溃问题,就需要对Deep SVDD中映射网络的各种参数施加约束。为了进一步提高Deep SVDD中映射网络的特征学习能力,同时解决超球崩溃问题,提出了基于混合高斯先验变分自编码器的深度多球支持向量数据描述(Deep Multiple-Sphere Support Vector Data Description Based on Variational Autoencoder with Mixture-of-Gaussians Prior,DMSVDD-VAE-MoG)。首先,通过预训练初始化网络参数和多个超球中心;其次,利用映射网络获得训练数据的潜在特征,对VAE损失、多个超球的平均半径和潜在特征到所对应超球中心的平均距离进行联合优化,以获得最优网络连接权重和多个最小超球。实验结果表明,所提DMSVDD-VAE-MoG在MNIST,Fashion-MNIST和CIFAR-10上均取得了优于其他8种相关方法的检测性能。
中图分类号:
[1]CHANDOLA V,BANERJEE A,KUMAR V.Anomaly Detection:A Survey[J].ACM Computing Surveys,2009,41(3):1-58. [2]AGGARWAL C.An Introduction to Outlier Analysis[M]//Outlier Analysis.Cham:Springer,2017:1-34. [3]NEUSCHMIED H,WINTER M,HOFER-SCHMITZ K,et al.Two Stage Anomaly Detection for Network Intrusion Detection[C]//International Conference on Information Systems Security and Privacy.Online Streaming:SCITEPRESS,2021:450-457. [4]POURHABIBI T,ONG K L,KAM B H,et al.Fraud Detection:A Systematic Literature Review of Graph-Based Anomaly Detection Approaches[J].Decision Support Systems,2020,133:113303. [5]CHEN D,WANG P,YUE L,et al.Anomaly Detection in Surveillance Video Based on Bidirectional Prediction[J].Image and Vision Computing,2020,98:103915. [6]NAKAO T,HANAOKA S,NOMURA Y,et al.UnsupervisedDeep Anomaly Detection in Chest Radiographs[J].Journal of Digital Imaging,2021,34(2):418-427. [7]SCHÖLKOPF B,WILLIAMSON R C,SMOLA A,et al.Support Vector Method for Novelty Detection[C]//International Conference on Neural Information Processing Systems.Cambridge:MIT Press,1999:582-588. [8]PARZEN E.On Estimation of a Probability Density Functionand Mode[J].The Annals of Mathematical Statistics,1962,33(3):1065-1076. [9]TAX D M J,DUIN R P W.Support Vector Data Description[J].Machine Learning,2004,54(1):45-66. [10]HAWKINS S,HE H,WILLIAMS G,et al.Outlier DetectionUsing Replicator Neural Networks[C]//Data Warehousing and Knowledge Discovery.Berlin:Springer,2002:170-180. [11]AN J,CHO S.Variational Autoencoder Based Anomaly Detection Using Reconstruction Probability[J].Special Lecture on IE,2015,2(1):1-18. [12]ERFANI S M,RAJASEGARAR S,KARUNASEKERA S,et al.High-Dimensional and Large-Scale Anomaly Detection Using a Linear One-Class SVM with Deep Learning[J].Pattern Recognition,2016,58:121-134. [13]RUFF L,VANDERMEULEN R,GOERNITZ N,et al.DeepOne-Class Classification[C]//International Conference on Machine Learning.Stockholm:ACM,2018,4393-4402. [14]CHALAPATHY R,MENON A K,CHAWLA S.Anomaly Detection Using One-Class Neural Networks[J].arXiv:1802.06360,2018. [15]ZHANG Z,DENG X.Anomaly Detection Using Improved Deep SVDD Model with Data Structure Preservation[J].Pattern Re-cognition Letters,2021,148:1-6. [16]GHAFOORI Z,LECKIE C.Deep Multi-Sphere Support Vector Data Description[C]//SIAM International Conference on Data Mining.Cincinnati:SIAM,2020:109-117. [17]ZHOU Y,LIANG X,ZHANG W,et al.VAE-Based Deep SVDD for Anomaly Detection[J].Neurocomputing,2021,453:131-140. [18]HU T,GUO Q,SUN H,et al.Nontechnical Losses Detectionthrough Coordinated BiWGAN and SVDD[J].IEEE Transactions on Neural Networks and Learning Systems,2021,32(5),1866-1880. [19]WU D,DENG Y,LI M.FL-MGVN:Federated Learning forAnomaly Detection Using Mixed Gaussian Variational Self-Encoding Network[J].Information Processing & Management,2022,59(2):102839. [20]BISHOP C M.Pattern Recognition and Machine Learning[M].New York:springer,2006. [21]JIANG Z,ZHENG Y,TAN H,et al.Variational Deep Embedding:An Unsupervised and Generative Approach to Clustering[C]//International Joint Conference on Artificial Intelligence.Melbourne:Morgan Kaufmann,2017:1965-1972. [22]ZONG B,SONG Q,MIN M R,et al.Deep Autoencoding Gaus-sian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations.Vancouver:IEEE,2018:781-795. [23]YANG L,FAN W,BOUGUILA N.Clustering Analysis ViaDeep Generative Models with Mixture Models[J].IEEE Transac-tions on Neural Networks and Learning Systems,2022,33(1):340-350. [24]KINGMA D P,WELLING M.Auto-Encoding Variational Bayes[C]//International Conference on Learning Representations.Banff:IEEE,2014:1-5. [25]LLOYD S.Least Squares Quantization in PCM[J].IEEE Transac-tions on Information Theory,1982,28(2):129-137. [26]KINGMA D P,BA J.Adam:A Method for Stochastic Optimization[C]//International Conference on Learning Representations.San Diego:IEEE,2015:1-15. [27]LECUN Y,BOTTOU L,BENGIO Y,et al.Gradient-BasedLearning Applied to Document Recognition[J].IEEE,1998,86(11):2278-2324. [28]XIAO H,RASUL K,VOLLGRAF R.Fashion-mnist:A Novel Image Dataset for Benchmarking Machine Learning Algorithms[J].arXiv:1708.07747,2017. [29]KRIZHEVSKY A,HINTON G.Learning Multiple Layers ofFeatures from Tiny Images[J/OL].Handbook of Systemic Autoimmune Diseases,2009,1(4).https://scholar.google.com/scholar?hl=zhCN&as_sdt=0%2C5&q=Learning+multiple+layers+of+features+from+tiny+image&btnG=. [30]FAWCETT T.An Introduction to ROC Analysis[J].PatternRecognition Letters,2006,27(8):861-874. [31]LIU F T,TING K M,ZHOU Z H.Isolation Forest[C]//IEEE International Conference on Data Mining.Pisa:IEEE,2008:413-422. [32]MASCI J,MEIER U,CIRESAN D,et al.Stacked Convolutional Auto-Encoders for Hierarchical Feature Extraction[C]//International Conference on Artificial Neural Networks.Espoo:Springer,2011:52-59. [33]LI D,TAO Q,LIU J,et al.Center-Aware Adversarial Auto-encoder for Anomaly Detection[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(6):2480-2493. [34]YANG Z,ZHANG T,BOZCHALOOI I S,et al.Memory-Augmented Generative Adversarial Networks for Anomaly Detection[J].IEEE Transactions on Neural Networks and Learning Systems,2022,33(6):2324-2334. |
|