计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 206-214.doi: 10.11896/jsjkx.230400090
闵莉花, 丁田中, 金正猛
MIN Lihua, DING Tianzhong, JIN Zhengmeng
摘要: 可形变图像配准是图像处理领域中一个非常重要的课题,是计算机视觉中最基本的问题之一,也是医学图像分析的一个难题。文中研究了两幅单模态灰度图像之间的图像配准问题,充分考虑了参考图像的边缘信息,提出了一个新的基于加权有界形变函数的可形变图像配准模型。首次提出了加权的有界形变函数空间,给出了该空间的定义及相关结论,并从理论上证明了所提模型解的存在性。同时,利用梯度下降法设计了有效的算法进行数值求解,分别在合成图像和医学图像上进行数值实验。实验结果和定量评估结果表明,与对比模型相比,所提模型由于引入了控制函数且将加权有界形变函数作为正则项,得到了更精确的配准结果,特别是在图像边缘及一些细节处配准效果有明显提高。
中图分类号:
[1]SOTIRAS A,DAVATZIKOS C,PARAGIOS N.Deformablemedical image registration:A survey[J].IEEE Transactions on Medical Imaging,2013,32(7):1153-1190. [2]HASKINS G,KRUGER U,YAN P.Deep learning in medical image registration:a survey[J].Machine Vision and Applications,2020,31:1-18. [3]MA L,LIU Y,ZHANG X,et al.Deep learning in remote sensing applications:A meta-analysis and review[J].ISPRS Journal of Photogrammetry and Remote Sensing,2019,152:166-177. [4]CHEN J,FREY E C,HE Y,et al.Transmorph:Transformer for unsupervised medical image registration[J].Medical Image Analysis,2022,82:102615. [5]HAN H,WANG A.A fast multigrid algorithm for 2D diffeomorphic image registration model[J].Journal of Computational and Applied Mathematics,2021,394:113576. [6]LOU H F,ZHANG D.The application of CMA-ES underGaussian process in medical image registration[J].Computer Science,2018,45 (S2):234-237,262. [7]DU Y,HAN H.Multiscale approach for bounded deformationimage registration[J].Fractal and Fractional,2022,6(11):681. [8]NIE Z,YANG X.Deformable image registration using functions of bounded deformation[J].IEEE Transactions on Medical Imaging,2019,38(6):1488-1500. [9]THIRION J P.Image matching as a diffusion process:an analogy with Maxwell’s demons[J].Medical Image Analysis,1998,2(3):243-260. [10]HAKER S,ZHU L,TANNENBAUM A,et al.Optimal mass transport for registration and warping[J].International Journal of Computer Vision,2004,60(3):225-240. [11]KROON D J,SLUMP C H.MRI modalitiy transformation in demon registration[C]//2009 IEEE International Symposium on Biomedical Imaging:From Nano to Macro.Boston:IEEE,2009:963-966. [12]VERCAUTEREN T,PENNEC X,PERCHANT A,et al.Sy-mmetric log-domain diffeomorphic registration:A demons-based approach[C]//Medical Image Computing and Computer Assisted Intervention.Berlin:Springer,2008:754-761. [13]VERCAUTEREN T,PENNEC X,PERCHANT A,et al.Diff-eomorphic demons:Efficient nonparametric image registration[J].NeuroImage,2009,45(1):S61-S72. [14]LOMBAERT H,GRADY L,PENNEC X,et al.Spectral log-demons:diffeomorphic image registration with very large deformations[J].International Journal of Computer Vision,2014,107(3):254-271. [15]CHUMCHOB N.Vectorial total variation-based regularization for variational image registration[J].IEEE Transactions on Image Processing,2013,22(11):4551-4559. [16]VISHNEVSKIY V,GASS T,SZEKELY G,et al.Isotropic total variation regularization of displacements in parametric image registration[J].IEEE Transactions on Medical Imaging,2016,36(2):385-395. [17]NIE Z,LI C,LIU H,et al.A variational model for deformable registration of uni-modal medical images with intensity biases[J].Journal of Mathematical Imaging and Vision,2021,63(8):1057-1068. [18]WANG H,DONG L,O’DANIEL J,et al.Validation of an acce-lerated ‘demons’ algorithm for deform-able image registration in radiation therapy[J].Physics in Medicine & Biology,2005,50(12):2887. [19]LIU Z,SONG Y Q,WANG D D.Medical image registration by combining adaptive mutation difference algorithm with Powell algorithm[J].Computer Science,2017,44 (11):297-300. [20]MA Y,NIU D,ZHANG J,et al.Unsupervised deformable image registration network for 3D medical images[J].Applied Intelligence,2022,52(1):766-779. [21]MA M,XU Y,SONG L,et al.Symmetric transformer-basednetwork for unsupervised image registration[J].Knowledge-Based Systems,2022,257:109959. [22]FU Y,LEI Y,WANG T,et al.Deep learning in medical image registration:a review[J].Physics in Medicine & Biology,2020,65(20):20TR01. [23]MOK T C W,CHUNG A C S.Conditional deformable image registration with convolutionnal neural network[C]//24th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).Strasbourg:Springer International Publishing,2021:35-45. [24]SIDERI-LAMPRETSA V,KAISSIS G,RUECKERT D.Multi-modal unsupervised brain image registration using edge maps[C]//2022 IEEE 19th International Symposium on Biomedical Imaging(ISBI).Kolkata:IEEE,2022:1-5. [25]KIM B,KIM D H,PARK S H,et al.CycleMorph:cycle consis-tent unsupervised deformable image registration[J].Medical Image Analysis,2021,71:102036. [26]DEY N,SCHLEMPER J,SALEHI S S M,et al.ContraReg:Contrastive Learning of Multi-modality Unsupervised Defor-mable Image Registration[C]//25th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2022).Cham:Springer Nature Switzerland,2022:66-77. [27]JIA X,THORLEY A,CHEN W,et al.Learning a model-driven variational network for deformable image registration[J].IEEE Transactions on Medical Imaging,2021,41(1):199-212. [28]CHEN J M,ZENG X J,ZHONG L Y,et al.Research progress on image registration methods based on deep learning[J].Journal of Quantum Electronics,2022,39 (6):899-926. [29]HERING A,HANSEN L,MOK T C W,et al.Learn2Reg:comprehensive multi-task medical image registration challenge,dataset and evaluation in the era of deep learning[J].IEEE Transactions on Medical Imaging,2023,42(3):697-712. [30]LIU Y,ZUO L,HAN S,et al.Coordinate translator for learning deformable medical image registration[C]//Multiscale Multi-modal Medical Imaging:Third International Workshop(MMMI 2022),Held in Conjunction with MICCAI 2022.Cham:Springer Nature Switzerland,2022:98-109. [31]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612. [32]CHEN Y,WUNDERLI T.Adaptive total variation for imagerestoration in BV space[J].Journal of Mathematical Analysis and Applications,2002,272(1):117-137. [33]BARROSO A C,FONSECA I,TOADER R.A relaxation theorem in the space of functions of bounded deformation[J].Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze,2000,29(1):19-49. [34]EVANS L C.Partial differential equations(2nd ed)[M].USA:American Mathematical Society,2010. [35]HOSSNY M,NAHAVANDI S,CREIGHTON D.Comme- nts on information measure for performance of image fusion[J].Electronics Letters,2008,44:1066-1067. [36]ZHANG J,LI Y.Diffeomorphic image registration with an optimal control relaxation and its implementation[J].SIAM Journal on Imaging Sciences,2021,14(4):1890-1931. |
|