计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 206-214.doi: 10.11896/jsjkx.230400090

• 计算机图形学&多媒体 • 上一篇    下一篇

基于加权有界形变函数的可形变图像配准模型

闵莉花, 丁田中, 金正猛   

  1. 南京邮电大学理学院 南京 210023
  • 收稿日期:2023-04-13 修回日期:2023-10-13 出版日期:2024-06-15 发布日期:2024-06-05
  • 通讯作者: 金正猛(jinzhm@njupt.edu.cn)
  • 作者简介:(mlh@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金面上项目(12271262);南京邮电大学自然科学基金(NY221097)

Deformable Image Registration Model Based on Weighted Bounded Deformation Function

MIN Lihua, DING Tianzhong, JIN Zhengmeng   

  1. School of Science,Nanjing University of Posts and Telecommunications,Nanjing 210023,China
  • Received:2023-04-13 Revised:2023-10-13 Online:2024-06-15 Published:2024-06-05
  • About author:MIN Lihua,born in 1986,Ph.D,asso-ciate professor.Her main research interests include partial differential equations,numerical optimization and image processing.
    JIN Zhengmeng,born in 1982,Ph.D,professor,Ph.D supervisor.His main research interests include partial diffe-rential equations,numerical optimization and image processing.
  • Supported by:
    National Natural Science Foundation of China(12271262) and Natural Science Foundation of Nanjing University of Posts and Telecommunications(NY221097).

摘要: 可形变图像配准是图像处理领域中一个非常重要的课题,是计算机视觉中最基本的问题之一,也是医学图像分析的一个难题。文中研究了两幅单模态灰度图像之间的图像配准问题,充分考虑了参考图像的边缘信息,提出了一个新的基于加权有界形变函数的可形变图像配准模型。首次提出了加权的有界形变函数空间,给出了该空间的定义及相关结论,并从理论上证明了所提模型解的存在性。同时,利用梯度下降法设计了有效的算法进行数值求解,分别在合成图像和医学图像上进行数值实验。实验结果和定量评估结果表明,与对比模型相比,所提模型由于引入了控制函数且将加权有界形变函数作为正则项,得到了更精确的配准结果,特别是在图像边缘及一些细节处配准效果有明显提高。

关键词: 可形变图像配准, 加权有界形变函数, 变分方法, 梯度下降法

Abstract: Deformable image registration is a very important topic in the field of image processing.It is one of the most basic problems in computer vision,and also a difficult point in medical image analysis.In this paper,we study the image registration of two uni-modal grayscale images.A new deformable image registration model based on the weighted bounded deformation function is proposed by fully considering the edge information of the reference image.In addition,the paper firstly proposes a weighted bounded deformation function space in which the definition and related conclusions are given.Theoretically,we prove the exis-tence of solutions to the proposed model.Furthermore,an effective algorithm is designed based on the gradient descent method to numerically solve the model.Moreover,numerical experiments which are also performed on synthetic images and medical images respectively show that,compared with other comparison models,the proposed model can obtain more accurate registration results by introducing control functions and using weighted bounded deformation functions as regular terms,especially in the image edge.

Key words: Deformable image registration, Weighted bounded deformation function, Variation method, Gradient descent method

中图分类号: 

  • TN911.73
[1]SOTIRAS A,DAVATZIKOS C,PARAGIOS N.Deformablemedical image registration:A survey[J].IEEE Transactions on Medical Imaging,2013,32(7):1153-1190.
[2]HASKINS G,KRUGER U,YAN P.Deep learning in medical image registration:a survey[J].Machine Vision and Applications,2020,31:1-18.
[3]MA L,LIU Y,ZHANG X,et al.Deep learning in remote sensing applications:A meta-analysis and review[J].ISPRS Journal of Photogrammetry and Remote Sensing,2019,152:166-177.
[4]CHEN J,FREY E C,HE Y,et al.Transmorph:Transformer for unsupervised medical image registration[J].Medical Image Analysis,2022,82:102615.
[5]HAN H,WANG A.A fast multigrid algorithm for 2D diffeomorphic image registration model[J].Journal of Computational and Applied Mathematics,2021,394:113576.
[6]LOU H F,ZHANG D.The application of CMA-ES underGaussian process in medical image registration[J].Computer Science,2018,45 (S2):234-237,262.
[7]DU Y,HAN H.Multiscale approach for bounded deformationimage registration[J].Fractal and Fractional,2022,6(11):681.
[8]NIE Z,YANG X.Deformable image registration using functions of bounded deformation[J].IEEE Transactions on Medical Imaging,2019,38(6):1488-1500.
[9]THIRION J P.Image matching as a diffusion process:an analogy with Maxwell’s demons[J].Medical Image Analysis,1998,2(3):243-260.
[10]HAKER S,ZHU L,TANNENBAUM A,et al.Optimal mass transport for registration and warping[J].International Journal of Computer Vision,2004,60(3):225-240.
[11]KROON D J,SLUMP C H.MRI modalitiy transformation in demon registration[C]//2009 IEEE International Symposium on Biomedical Imaging:From Nano to Macro.Boston:IEEE,2009:963-966.
[12]VERCAUTEREN T,PENNEC X,PERCHANT A,et al.Sy-mmetric log-domain diffeomorphic registration:A demons-based approach[C]//Medical Image Computing and Computer Assisted Intervention.Berlin:Springer,2008:754-761.
[13]VERCAUTEREN T,PENNEC X,PERCHANT A,et al.Diff-eomorphic demons:Efficient nonparametric image registration[J].NeuroImage,2009,45(1):S61-S72.
[14]LOMBAERT H,GRADY L,PENNEC X,et al.Spectral log-demons:diffeomorphic image registration with very large deformations[J].International Journal of Computer Vision,2014,107(3):254-271.
[15]CHUMCHOB N.Vectorial total variation-based regularization for variational image registration[J].IEEE Transactions on Image Processing,2013,22(11):4551-4559.
[16]VISHNEVSKIY V,GASS T,SZEKELY G,et al.Isotropic total variation regularization of displacements in parametric image registration[J].IEEE Transactions on Medical Imaging,2016,36(2):385-395.
[17]NIE Z,LI C,LIU H,et al.A variational model for deformable registration of uni-modal medical images with intensity biases[J].Journal of Mathematical Imaging and Vision,2021,63(8):1057-1068.
[18]WANG H,DONG L,O’DANIEL J,et al.Validation of an acce-lerated ‘demons’ algorithm for deform-able image registration in radiation therapy[J].Physics in Medicine & Biology,2005,50(12):2887.
[19]LIU Z,SONG Y Q,WANG D D.Medical image registration by combining adaptive mutation difference algorithm with Powell algorithm[J].Computer Science,2017,44 (11):297-300.
[20]MA Y,NIU D,ZHANG J,et al.Unsupervised deformable image registration network for 3D medical images[J].Applied Intelligence,2022,52(1):766-779.
[21]MA M,XU Y,SONG L,et al.Symmetric transformer-basednetwork for unsupervised image registration[J].Knowledge-Based Systems,2022,257:109959.
[22]FU Y,LEI Y,WANG T,et al.Deep learning in medical image registration:a review[J].Physics in Medicine & Biology,2020,65(20):20TR01.
[23]MOK T C W,CHUNG A C S.Conditional deformable image registration with convolutionnal neural network[C]//24th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2021).Strasbourg:Springer International Publishing,2021:35-45.
[24]SIDERI-LAMPRETSA V,KAISSIS G,RUECKERT D.Multi-modal unsupervised brain image registration using edge maps[C]//2022 IEEE 19th International Symposium on Biomedical Imaging(ISBI).Kolkata:IEEE,2022:1-5.
[25]KIM B,KIM D H,PARK S H,et al.CycleMorph:cycle consis-tent unsupervised deformable image registration[J].Medical Image Analysis,2021,71:102036.
[26]DEY N,SCHLEMPER J,SALEHI S S M,et al.ContraReg:Contrastive Learning of Multi-modality Unsupervised Defor-mable Image Registration[C]//25th International Conference Medical Image Computing and Computer Assisted Intervention(MICCAI 2022).Cham:Springer Nature Switzerland,2022:66-77.
[27]JIA X,THORLEY A,CHEN W,et al.Learning a model-driven variational network for deformable image registration[J].IEEE Transactions on Medical Imaging,2021,41(1):199-212.
[28]CHEN J M,ZENG X J,ZHONG L Y,et al.Research progress on image registration methods based on deep learning[J].Journal of Quantum Electronics,2022,39 (6):899-926.
[29]HERING A,HANSEN L,MOK T C W,et al.Learn2Reg:comprehensive multi-task medical image registration challenge,dataset and evaluation in the era of deep learning[J].IEEE Transactions on Medical Imaging,2023,42(3):697-712.
[30]LIU Y,ZUO L,HAN S,et al.Coordinate translator for learning deformable medical image registration[C]//Multiscale Multi-modal Medical Imaging:Third International Workshop(MMMI 2022),Held in Conjunction with MICCAI 2022.Cham:Springer Nature Switzerland,2022:98-109.
[31]WANG Z,BOVIK A C,SHEIKH H R,et al.Image quality assessment:from error visibility to structural similarity[J].IEEE Transactions on Image Processing,2004,13(4):600-612.
[32]CHEN Y,WUNDERLI T.Adaptive total variation for imagerestoration in BV space[J].Journal of Mathematical Analysis and Applications,2002,272(1):117-137.
[33]BARROSO A C,FONSECA I,TOADER R.A relaxation theorem in the space of functions of bounded deformation[J].Annali Della Scuola Normale Superiore di Pisa-Classe di Scienze,2000,29(1):19-49.
[34]EVANS L C.Partial differential equations(2nd ed)[M].USA:American Mathematical Society,2010.
[35]HOSSNY M,NAHAVANDI S,CREIGHTON D.Comme- nts on information measure for performance of image fusion[J].Electronics Letters,2008,44:1066-1067.
[36]ZHANG J,LI Y.Diffeomorphic image registration with an optimal control relaxation and its implementation[J].SIAM Journal on Imaging Sciences,2021,14(4):1890-1931.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!