计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 299-308.doi: 10.11896/jsjkx.230600059

• 人工智能 • 上一篇    下一篇

基于句信息增强词信息的方面级情感分类

李怡霖1, 孙成胜2, 罗林3, 琚生根1   

  1. 1 四川大学计算机学院 成都 610065
    2 中国电子科技网络信息安全有限责任公司 成都 610041
    3 中国电子科技集团公司第三十研究所 成都 610041
  • 收稿日期:2023-06-07 修回日期:2023-11-25 出版日期:2024-06-15 发布日期:2024-06-05
  • 通讯作者: 琚生根(jsg@scu.edu.cn)
  • 作者简介:(lyl_scu170@163.com)
  • 基金资助:
    国家自然科学基金(62137001)

Aspect-based Sentiment Classification for Word Information Enhancement Based on Sentence Information

LI Yilin1, SUN Chengsheng2, LUO Lin3, JU Shenggen1   

  1. 1 College of Computer Science,Sichuan University,Chengdu 610065,China
    2 China Electronic Technology Cyber Security Co.,Ltd,Chengdu 610041,China
    3 No.30 Research Institute of CETC,Chengdu 610041,China
  • Received:2023-06-07 Revised:2023-11-25 Online:2024-06-15 Published:2024-06-05
  • About author:LI Yilin,born in 1997,postgraduate,is a member of CCF(No.K9226G).His main research interests include natural language processing and sentiment analysis.
    JU Shenggen,born in 1970,Ph.D,professor,Ph.D supervisor,is a senior member of CCF(No.14364S).His main research interests include data mining,natural language processing and know-ledge graph.
  • Supported by:
    National Natural Science Foundation of China(62137001).

摘要: 方面级情感分类属于细粒度的情感分类,旨在判断句子中指定方面词的情感极性。近年来,句法知识在方面级情感分类任务中得到了广泛应用。目前主流的模型利用句法依存树和图卷积神经网络进行情感极性的分类。然而,此类模型着眼于利用聚合后的方面词信息来判断情感极性,很少关注句子的全局信息对情感极性的影响,从而导致情感极性分类结果出现偏差。为了解决这一问题,提出了一种基于句信息增强词信息的方面级情感分类模型,该模型通过对比学习对句向量进行表示学习,以减小句向量对比损失为目标调整词向量的特征表示,最后通过图卷积神经网络聚合意见词信息得出情感分类结果。在SemEval2014数据集和Twitter数据集上进行实验,结果表明,所提模型可以提高分类的准确性,综合验证了该方法的有效性。

关键词: 方面级情感分类, 句信息, 词信息, 对比学习, 图卷积神经网络

Abstract: Aspect-based sentiment classification is a fine-grained sentiment classification task that aims to determine the sentiment polarity of specified aspect terms in a sentence.In recent years,syntactic knowledge has been widely applied in the field of aspect-based sentiment classification.Current mainstream models utilize syntactic dependency trees and graph convolutional neural networks to classify sentiment polarity.However,these models primarily focus on using aggregated aspect term information to determine sentiment polarity,and few studies focus on the impact of global sentence information on sentiment polarity.This leads to biased sentiment classification results.To address this issue,this paper proposes an aspect-based sentiment classification model that enhances aspect term information with sentence-level information.This model learns sentence representations through con-trastive learning,with the goal of minimizing the contrastive loss of sentence vectors to adjust the feature representation of word vectors.Finally,the model aggregates opinion word information using a graph convolutional neural network(GCN)to obtain sentiment classification results.Experimental results on the SemEval2014 dataset and Twitter dataset demonstrate that the model improves classification accuracy,which verifies the effectiveness of our approach.

Key words: Aspect-based sentiment classification, Sentence information, Word information, Contrastive learning, Graph convolutional network

中图分类号: 

  • TP391
[1]SCHOUTE,K,FRASINCAR F.Survey on Aspect-Level Sentiment Analysis[J].IEEE Transactions on Knowledge and Data Engineering,2016,28(3):813-830.
[2]PENG B,LEE L.Opinion Mining and Sentiment Analysis[M].Boston:Now Publishers Inc.,2008.
[3]THET T T,NA J C,KHOO C S G.Aspect-based sentimentanalysis of movie reviews on discussion boards[J].Journal of information science,2010,36(6):823-848.
[4]WHISSELL C.Objective analysis of text:II.Using an emotional compass to describe the emotional tone of situation comedies[J].Psychological Reports,1998,82(2):643-646.
[5]BACCIANELLA S,ESULI A,SEBASTIANI F.SentiWordNet3.0:An enhanced lexical resource for sentiment analysis and opinion mining[C]//Proceedings of International Conference on Language Resources and Evaluation.Valletta:European Language Resources Association(ELRA)2010,10:2200-2204.
[6]ZHAO S,YANG F.Dual channel Chinese sentiment analysis of characters and words based on deep learning[C]//IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference(ITNEC).Chongqing:IEEE,2023:231-235.
[7]XU L H,LIN H F,PAN Y,et al.Constructing the affective le-xicon ontology[J].Journal of the China society for Scientific and Technical Information,2008,27(2):180-185.
[8]MANEK A S,SHENOY P D,MOHAN M C,et al.Aspect term extraction for sentiment analysis in large movie reviews using Gini Index feature selection method and SVM classifier[J].World wide web,2017,20:135-154.
[9]KIM Y.Convolutional Neural Networks for Sentence Classification[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).Doha:Association for Computational Linguistics,2014:1746-1751.
[10]CHO K,MERRIËNBOER B V,GULCEHRE C,et al.Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation[C]//Proceedings of the 2014 Confe-rence on Empirical Methods in Natural Language Processing(EMNLP).Doha:Association for Computational Linguistics,2014:1724-1734.
[11]KIPF T N,WELLING M.Semi-supervised classification withgraph convolutional networks[C]//International Conference on Learning Representations.Toulon,2017.
[12]MIKOLOV T,CHEN K,CORRADO G,et al.Efficient Estimation of Word Representations in Vector Space[C]//Proceedings of the International Conference on Learning Representations.Scottsdale,2013.
[13]PENNINGTO J,SOCHER R,MANNING C.Glove:Global vectors for word representation[C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing(EMNLP).Doha:Association for Computational Linguistics,2014:1532-1543.
[14]XUE W,LI T.Aspect Based Sentiment Analysis with GatedConvolutional Networks[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne:Association for Computational Linguistics,2018:2514-2523.
[15]LI X,BING L D,LAM W,et al.Transformation Networks for Target-Oriented Sentiment Classification[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics.Melbourne:Association for Computational Linguistics,2018:946-956.
[16]ZHU L,CHEN S P.Text Sentiment Analysis Combined Sentiment Enhanced and Attention[J].Journal of Chinese Computer Systems.2022,43(5):957-963.
[17]HOCHREITER S,SCHMIDHUBER J.Long short-term memory[J].Neural Computation,1997,9(8):1735-1780.
[18]GU S Q,ZHANG L P,HOU Y X,et al.A position-aware bidirectional attention network for aspect-level sentiment analysis[C]//Proceedings of the 27th International Conference on Computational Linguistics.Santa Fe:Association for Computational Linguistics,2018:774-784.
[19]FAN F F,FENG Y S,ZHAO D Y.Multi-grained attention network for aspect-levelsentiment classification[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.Brussels:Association for Computational Linguistics,2018:3433-3442.
[20]YANG Y F,ZHAO H.Aspect-based Sentiment Analysis as Ma-chine Reading Comprehension[C]//Proceedings of the 29th International Conference on Computational Linguistics.Gyeongju:International Committee on Computational Linguistics,2022:2461-2471.
[21]VELICˇKOVIC' P,CUCURULL G,CASANOVA A,et al.Graph Attention Networks[C]//International Conference on Learning Representations(ICLR).2018.
[22]SUN K,ZHANG R C,MENSAH S,et al.Aspect-level senti-ment analysis via convolution over dependency tree[C]//Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Confe-rence on Natural Language Processing(EMNLP-IJCNLP).Hong Kong:Association for Computational Linguistics,2019:5679-5688.
[23]PANG S G,XUE Y,YAN Z H,et al.Dynamic and multi-channel graph convolutional networks for aspect-based sentiment analysis[C]//Findings of the Association for Computational Linguistics:ACL-IJCNLP.Online:Association for computational linguistics,2021:2627-2636.
[24]WANG Y L,ZHANG F,YU Z,et al.Aspect-level Sentiment Classification Based on Interactive Attention and Graph Convolutional Network[J].Computer Science,2022,50(4):196-203.
[25]JIANG X T,WANG Z Q,ZHOU G D.Semantic Simplification for Sentiment Classification[C]//Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing.Abu Dhabi:Association for Computational Linguistics,2022:11022-11032.
[26]LIU Z H,YANG Y D,CHEN Y Z.Relational Attention Based Graph Convolutional Network for Aspect-level Sentiment Ana-lysis[J].Journal of Chinese Computer Systems,2023,44(4):752-758.
[27]LI R F,CHEN H,FENG F X,et al.Dual graph convolutional networks for aspect-based sentiment analysis[C]//Proceedings of the 59th Annual Meeting of the Association for Computa-tional Linguistics and the 11th International Joint Conference on Natural Language Processing.Online:Association for Computational Linguistics.2021:6319-6329.
[28]WANG K,SHEN W Z,YANG Y Y,et al.Relational Graph Attention Network for Aspect-based Sentiment Analysis[C]//Proceedings of the 58th Annual Meeting of the Association for Computa-tional Linguistics.Online:Association for Computational Linguistics,2020:3229-3238.
[29]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Minneapolis:Association for Computational Linguistics,2019:4171-4186.
[30]GAO T Y,YAO X C,CHEN D Q.Simcse:Simple contrastive learning of sentence embeddings[C]//Proceedings of the 2021 Conference on Empirical Methods in Natural Language Proces-sing.Online and Punta Cana:Association for Computational Linguistics,2021:6894-6910.
[31]PONTIKI M,GALANIS D,PAVLOPOULOS J,et al.SemEval-2014 task 4:aspect based sentiment analysis[C]//Proceedings of the 8th International Workshop on Semantic Evaluation.Dublin:Association for Computational Linguistics.2014:27-35.
[32]DONG L,WEI F R,TAN C Q,et al.Adaptive recursive neural network for target-dependent twitter sentiment classification[C]//Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics.Baltimore:Association for Computational Linguistics,2014:49-54.
[33]MA D H,LI S J,ZHANG X D,et al.Interactive attention networks for aspect-level sentiment classification[C]//26th International Joint Conference on Artificial Intelligence.Melbourne:AAAI Press,2017:4068-4074.
[34]SONG Y W,WANG J H,JIANG T,et al.Targeted sentiment classification with attentional encoder network[C]//28th International Conference on Artificial Neural Networks.Munich:Cham:Springer,2019:93-103.
[35]ZHANG C,LI Q C,SONG D W.Aspect-based Sentiment Classification with Aspect-specific Graph Convolutional Networks[C]//Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing.Hong Kong:Association for Computa-tional Linguistics 2019:4568-4578.
[36]ZHANG Z,ZHOU Z,WANG Y.SSEGCN:Syntactic and semantic enhanced graph convolutional network for aspect-based sentiment analysis[C]//Proceedings of the 2022 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Seattle:Association for Computational Linguistics,2022:4916-4925.
[37]MATTEN L V D,HINTON G.Visualizing data using t-SNE[J].Journal of Machine Learning Research,2008,9(11):2579-2605.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!