计算机科学 ›› 2024, Vol. 51 ›› Issue (6): 409-415.doi: 10.11896/jsjkx.230400003

• 信息安全 • 上一篇    下一篇

基于改进GraphSAGE算法的浏览器指纹追踪

楚小茜1, 张建辉2, 张德升1, 苏珲1   

  1. 1 郑州大学网络空间安全学院 郑州 450000
    2 嵩山实验室 郑州 450000
  • 收稿日期:2023-04-03 修回日期:2023-08-02 出版日期:2024-06-15 发布日期:2024-06-05
  • 通讯作者: 张建辉(ndsczjh@163.com)
  • 作者简介:(cxx2066624204@163.com)
  • 基金资助:
    国家重点研发计划(2022YFB2901403);河南省重大科技专项(221100210900-01)

Browser Fingerprint Tracking Based on Improved GraphSAGE Algorithm

CHU Xiaoxi1, ZHANG Jianhui2, ZHANG Desheng1, SU Hui1   

  1. 1 School of Cyber Science and Engineering,Zhengzhou University,Zhengzhou 450000,China
    2 Songshan Laboratory,Zhengzhou 450000,China
  • Received:2023-04-03 Revised:2023-08-02 Online:2024-06-15 Published:2024-06-05
  • About author:CHU Xiaoxi,born in 1999,postgra-duate.Her main research interests include cyberspace security and so on.
    ZHANG Jianhui,born in 1977,Ph.D,associate researcher,master supervi-sor.His main research interests include new network architecture,network routing technology,network data analysis and security control.
  • Supported by:
    National Key Research and Development Program of China(2022YFB2901403) and Major Science and TechnologyProgram of Henan Province(221100210900-01).

摘要: 当前Web追踪领域主要使用浏览器指纹对用户进行追踪。针对浏览器指纹追踪技术存在指纹随时间动态变化、不易长期追踪等问题,提出一种关注节点和边缘特征的改进图采样聚合算法(An Improved Graph SAmple and AGgregatE with Both Node and Edge Features,NE-GraphSAGE)用于浏览器指纹追踪。首先以浏览器指纹为节点、指纹之间特征相似度为边构建图数据。其次对图神经网络中的GraphSAGE算法进行改进使其不仅能关注节点特征,而且能捕获边缘信息并对边缘分类,从而识别指纹。最后将NE-GraphSAGE算法与Eckersley算法、FPStalker算法和LSTM算法进行对比,验证NE-GraphSAGE算法的识别效果。实验结果表明,NE-GraphSAGE算法在准确率和追踪时长上均有不同程度的提升,最大追踪时长可达80天,相比其他3种算法性能更优,验证了NE-GraphSAGE算法对浏览器指纹长期追踪的能力。

关键词: 浏览器指纹, 图神经网络, GraphSAGE算法, 用户追踪, 边缘分类

Abstract: The current Web tracking field mainly uses browser fingerprint to track users,and for the problems of browser fingerprint tracking technology such as dynamic changes of fingerprint over time and the difficulty of long-term tracking,an improved graph sampling aggregation algorithm NE-GraphSAGE is proposed for browser fingerprint tracking. Firstly,the graph data is constructed using browser fingerprint as nodes and feature similarity between fingerprints as edges. Secondly,the GraphSAGE algorithm in graph neural networks is improved to not only focus on node features,but also capture edge information and classify edges to identify fingerprint. Finally,the NE-GraphSAGE algorithm is compared with Eckersley algorithm,FPStarker algorithm,and LSTM algorithm to verify the recognition effect of NE-GraphSAGE algorithm. Experimental results show that the NE-GraphSAGE algorithm has different degrees of improvement in accuracy and tracking time,and the maximum tracking time is up to 80 days. Compared with the other three algorithms,the NE-GraphSAGE algorithm has better performance,verifying its ability to track browser fingerprint for a long time.

Key words: Browser fingerprint, Graph neural network, GraphSAGE algorithm, User racking, Edge classification

中图分类号: 

  • TP393
[1]Cookie Policy-Intellias[EB/OL].[2021-12-28].https://intellias.com/cookie-policy/.
[2]Cookies:An overview of associated privacy and security risks-Infosec Resources[EB/OL].[2021-12-28].https://resources.infosecinstitute.com/topic/cookies an-overview-of-associated-privacy-and-security risks/.
[3]PIERRE L,NATALIIA B,BENOIT B,et al.Browser finger-printing:a survey[J].ACM Trans,2020,14(2):1-33.
[4]WANG X Q,LIU Q X,LIU C G,et al.Overview of Web Tra-cking Technology[J].Computer Research and Development,2023,60(4):839-859.
[5]LI S,CAO Y Z.Who touched my browser fingerprint? A large-scale measurement study and classification of fingerprint dyna-mics[C]//Proceedings of the 20th ACM Internet Measurement Conference.New York:ACM,2020:370-385.
[6]WU Z,PAN S,CHEN F,et al.A Comprehensive Survey onGraph Neural Networks[C]//IEEE Transactions on Neural Networks and Learning Systems.2021:4-24.
[7]HAMILTON W L,YING Z,LESKOVEC J.Inductive representation learning on large graphs[J].arXiv:1706.02216,2017.
[8]ECKERSLEY P.How unique is your web browser?[C]//Proceedings of the 2010 Privacy Enhancing Technologies Sympo-sium.2010:1-18.
[9]ZHANG L F,WANG Y,WU Y Y,et al.Browser fingerprintcollection technology based on statistics[J].Information Network Security,2019(11):49-55.
[10]ZHANG Y Q,WANG W P,WANG W.A fingerprint recognition method for gradient browsers[J].Computer Engineering and Applications,2018,54(7):102-106.
[11]JIANG W,WANG X X,SONG X F,et al.Tracking your browser with high-performance browser fingerprint recognition mo-del[J].China Communications,2020,17(3):168-175.
[12]ANTONIO E,FAJARDO A,MEDINA R.Tracking BrowserFingerprint using Rule Based Algorithm[C]//16th IEEE International Colloquium on Signal Processing & Its Applications(CSPA).2020:225-229.
[13]ANDRIAMILANTO N,ALLARD T,GUELVOUIT G L.FPSelect:low-cost browser fingerprints for mitigating dictionary attacks against web authentication mechanisms[C]//Annual Computer Security Applications Conference(ACSAC’20).2020:627-642.
[14]ZOU F,ZHAI H.Browser Fingerprinting Identification Using Incremental Clustering Algorithm Based on Autoencoder[C]//2021 IEEE 23rd Int Conf on High Performance Computing & Communications.2021:525-532.
[15]ANTOINE V,PIERRE L,ROMAIN R.FP-STALKER:Tra-cking browser fingerprint evolutions[C]//Proceedings of the 39th IEEE Symposium on Security and Privacy.2018:1-14.
[16]LI X,CUI X,SHI L,et al.Constructing Browser Fingerprint Tracking Chain Based on LSTM Model[C]//Third IEEE International Conference on Data Science in Cyberspace(DSC 2018).Guangzhou,China,IEEE,2018:213-218.
[17]LIU Q X,LIU X Y,LUO C,et al.Android Browser Fingerprin-ting Method Based on Bidirectional Recurrent Neural Network[J].Journal of Computer Research and Development,2020,57:2294.
[18]GAO F,WANG J,LIU J Q.Research on link detection techno-logy based on dynamic browser fingerprints[J].Journal of Network and Information Security,2022,8(4):144-156.
[19]RIVERA E,TENGANA L,SOLANO J,et al.Scalable and Secure HTML5 Canvas-Based User Authentication[C]//Applied Cryptography and Network Security Workshops.2022:554-574.
[20]CAO Y,LI S,WIJMANS E.(Cross-)Browser Fingerprinting via OS and Hardware Level Features[C]//24th Annual Network and Distributed System Security Symposium(NDSS 2017).San Diego,California,USA.The Internet Society,2017.
[21]MA S,LIU J W,ZUO X.Survey on graph neural network[J].Journal of Computer Research and Development,2022,59(1):47-80.
[22]WAI W L,SIAMAK L,MOHANAD S,et al.E-graphsage:Agraph neural network based intrusion detection systemJ].ar-Xiv:2103.16329,2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!