计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230400153-6.doi: 10.11896/jsjkx.230400153

• 人工智能 • 上一篇    下一篇

面向工业数字孪生的三层知识图谱结构设计方法

唐昕1,2, 孙宇菲1,2, 王钰珏1,2, 石敏1, 朱登明2   

  1. 1 中国科学院计算技术研究所 北京 100190
    2 华北电力大学控制与计算机工程学院 北京 102206
  • 发布日期:2024-06-06
  • 通讯作者: 朱登明(mdzhu@ict.ac.cn)
  • 作者简介:(tx@ncepu.edu.cn)
  • 基金资助:
    国家重点研发计划(2020YFB1710400)

Three Layer Knowledge Graph Architecture for Industrial Digital Twins

TANG Xin1,2, SUN Yufei1,2, WANG Yujue1,2, SHI Min1, ZHU Dengming2   

  1. 1 Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China
    2 School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China
  • Published:2024-06-06
  • About author:TANG Xin,born in 2000,master.His main research interests include know-ledge graph and times series forecast.
    ZHU Dengming,born in 1973,Ph.D,associate researcher,master supervisor,is a member of CCF(No.05984S).His main research interests include virtual reality and human-computer interaction.
  • Supported by:
    National Key Research and Development Program of China(2020YFB1710400).

摘要: 随着工业领域数字化和智能化的发展,企业正面临着提高生产效率、降低生产成本、优化生产过程以及实现实时监控等挑战。数字孪生技术作为一种有效的解决方案,受到了广泛关注。然而,工业建设数字孪生过程中存在数据获取与整合、模型构建与更新以及实时性与精度等难点。为解决这些问题,提出了一种基于数字孪生的知识图谱概念-实例-模块结构设计方法。数字孪生知识图谱模型采用概念-实例-模块三层架构,概念层通过知识图谱建立全面有机的知识网络;实例层进行数字化建模,实现理论参数的真实再现;知识模块层则将前两层知识进行融合,形成功能模块,以实现全面监测和控制。这一模型能够对工业加工知识进行更为准确、细致的建模和分析,帮助企业实现数字化建模、精确仿真模拟、预测分析、异常检测等高级应用功能。

关键词: 数字孪生, 知识图谱, 智能制造, 生产优化, 质量控制

Abstract: As digitalization and intelligence continue to develop in the industrial field,enterprises are facing challenges in improving production efficiency,reducing production costs,optimizing production processes,and achieving real-time monitoring.Digital twin technology has received widespread attention as an effective solution.However,there are difficulties in data acquisition and integration,model construction and updating,and real-time performance and accuracy in the process of industrial digital twin construction.To address these issues,this paper proposes a concept-instance-module structure design method based on digital twin knowledge graph.The digital twin knowledge graph model proposed in this paper adopts a three-layer architecture of concept-instance-module.The concept layer establishes a comprehensive and organic knowledge network through the knowledge graph.The instance layer achieves digital modeling to reproduce theoretical parameters realistically.The knowledge module layer integrates the knowledge of the previous two layers to form functional modules for comprehensive monitoring and control.This model can provide more accurate and detailed modeling and analysis of industrial processing knowledge,helping enterprises to achieve advanced application functions such as digital modeling,accurate simulation,predictive analysis,and anomaly detection.

Key words: Digital twin, Knowledge graph, Intelligent manufacturing, Optimization of the production process, Quality control

中图分类号: 

  • TP391.7
[1]LI X,LIU X,WAN X X.Overview of digital twins application and safe development[J].Journal of System Simulation,2019,31(3):385-392.
[2]TUEGEL E J,INGRAFFEA A R,EASON T G,et al.Reengineering aircraft structural life prediction using a digital twin[J].International Journal of Aerospace Engineering,2011,6:1-14.
[3]GUO F Y,LIU J H,ZOU F,et al.Research on the state-of-art,connotation and key implementation technology of assembly process planning with digital twin[J].Journal of Mechanical Engineering,2019,55(17):110-132.
[4]Knowledge management empowers industry innovation and development[J].China Survey and Design,2020(11):22-23.
[5]AMIT S.Introducing the knowledge graph[R].America:Official Blog of Google,2012.
[6]XU Z L,SHENG Y P,HE L R,et al.Overview of Knowledge Graph Technology[J].Journal of University of Electronic Science and Technology,2016,45(4):589-606.
[7]LIANG J,WEN Y.Research on the Application of Knowledge Graph in Medical Assisted Diagnosis[J].Journal of Medical Informatics,2022,43(11):34-40.
[8]ZHOU J J,TIAN Z W,ZHOU S Y.Medical intelligent dialogue robot based on knowledge graph[J].Information Technology,2022,46(12):62-68.
[9]SUN T T.Research on Knowledge Graph Medical DiagnosisMethod Based on Deep Learning[D].Baotou:Inner Mongolia University of Science and Technology,2022.
[10]XU T T.Construction of medical knowledge graph based on NLP and application of intelligent consultation platform[D].Shanghai:East China University of Technology,2022.
[11]JIA Y H.Construction and Practice of Industrial and Commercial Bank of China Enterprise Level Financial Knowledge Graph[J].China Financial Computer,2022,391(2):66-69.
[12]WU M Y.Design and Implementation of a Financial Domain Service System Based on Knowledge Graph[D].Beijing:Beijing University of Posts and Telecommunications,2021.
[13]JI X,WU T X,YANG Z W,et al.Prediction of Power Equipment Defects Based on Time Series Knowledge Graph[J/OL].Journal of Beijing University of Aeronautics and Astronautics:1-9.[2023-02-07].
[14]LU G H,YU T,CHEN J B,et al.Application and Prospects of Knowledge Graph in Power System Dispatching and Operation[J/OL].Power Information and Communication Technology:1-13.[2023-02-07].
[15]GU X H.Intelligent Design Method for Complex Product Assembly Process Based on Knowledge Graph[D].Shanghai:Donghua University,2022.
[16]HAN Chaoqun.Research on Knowledge Management of Cutting Tool Products Based on Knowledge Graph[D].Xi’an:Xi’an University of Technology,2022.
[17]WANG X,XU C X.A Method for Predicting the Quality of Loose Moisture regain in Cut Tobacco by Combining Knowledge Graph and Deep Neural Network[J].Light Industry Machinery,2022,40(4):100-104.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!