计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230500079-9.doi: 10.11896/jsjkx.230500079
李振, 冯锋
LI Zhen, FENG Feng
摘要: 针对人工蜂鸟算法(AHA)在迭代过程中出现全局勘探能力不足和收敛速度较慢的问题,提出了一种多策略改进的人工蜂鸟算法(IAHA)。首先,采用融合Tent混沌映射与反向学习的策略对种群进行初始化,生成高质量的初始种群,为算法全局寻优奠定基础;然后,在引导觅食阶段引入莱维飞行策略以提高全局搜索能力,使算法能够快速跳出局部最优,加快收敛速度;最后,将单纯形法引入算法中,在每一次迭代结束前对质量较差的种群进行处理,提高算法的局部寻优能力。将IAHA分别与4种基本算法、3种单改进阶段的人工蜂鸟算法、2种现有的改进人工蜂鸟算法进行对比,对8个基准测试函数进行仿真实验以及Wilcoxon秩和检验,对IAHA性能进行评估,并分析其时间复杂度。实验结果表明,与上述所提的算法相比,IAHA的收敛速度更快,全局寻优能力更强,算法性能更佳。
中图分类号:
[1]WANG L.Intelligent Optimization Algorithms with Applica-tions[J].Beijing Tsinghua University press,2001. [2]JAMES K,EBERHART R.Particle swarm optimization[C]//Proceedings of ICNN’95-International Conference on Neural Networks.IEEE,1995. [3]MIRJALILI S,MIRJALILI S M,LEWIS A.Grey Wolf Optimizer[J].Advances in Engineering Software,2014,69(3):46-61. [4]MIRJALILI,SEYEDALI,LEWIS,et al.The Whale Optimiz-ation Algorithm[J].Advances in Engineering Software,2016,95(2016):51-67. [5]GAO J H,ZHANG Y.FWA-PSO-MSVM based fault diagnosis of ship area distribution power system[J].Computer Science,2022,49(S2):956-960. [6]LU C Y,YU J,YU Z D,et al.An optimized SVR based on improved gray wolf algorithm for diameter detection of reinforcement in concrete[J].Computer Science,2022,49(11):228-233. [7]ABDEL-BASSET M,MANOGARAN G,EL-SHAHAT D,et al.A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling pro-blem[J].Future Generations Computer Systems,2018,85:129-145. [8]ZHAO W G,WANG L Y,MIRJALILI S.Artificial hummingbird algorithm:A new bio-inspired optimizer with its engineering applications[J].Computer Methods in Applied Mechanics and Engineering,2022(388):114194. [9]HAUPT R L,HAUPT S E.Practical genetic algorithms[M].Berlin,Heidelberg:Springer,2006. [10]LI D D,WU Y X,ZHU C C,et al.An improved sparrow search algorithm based on multiple improvement strategies[J].Computer Science,2022,49(S1):217-222. [11]WEI C,WEI X X,HUANG H J.Pigeon flocking algorithmbased on chaotic initialization and Gaussian variation[J].Computer Engineering and Design,2023,44(4):1112-1121. [12]NI L Y,FU Q,WU C C.Monarch butterfly optimization algorithm based on logistic chaotic mapping optimization[J].Computer System Applications,2021,30(7):150-157. [13]SHAN L,QIANG H,LI J,et al.Chaotic optimization algorithm based on Tent map[J].Control and Decision,2005,20(2):179-182. [14]GIOVANNI I,DOS SANTOS JUNIOR V C,DE MELO V V.An improved Jaya optimization algorithm with Lévy flight[J].Expert Systems with Applications,2021(165):11390201-11390220. [15]LAMMING,MICHAEL G,RHODES W L.A simple method for improved color printing of monitor images[J].ACM Transactions on Graphics(TOG),1990,9(4):345-375. [16]WANG L,ZHANG L,ZHAO W,et al.Parameter Identification of a Governing System in a Pumped Storage Unit Based on an Improved Artificial Hummingbird Algorithm[J].Energies,2022,15(19):6966. [17]RAMADAN A,KAMEL S,HASSAN M H,et al.Accuratephotovoltaic models based on an adaptive opposition artificial hummingbird algorithm[J].Electronics,2022,11(3):318. |
|