计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230900030-6.doi: 10.11896/jsjkx.230900030
李旻哲, 殷继彬
LI Minzhe, YIN Jibin
摘要: 现有的中医命名实体识别相关研究较少,基本都是基于中文病例做相关研究,在传统中医编写的病例文本中表现不佳。针对中医案例中命名实体密集且边界模糊难以划分的特点,提出了一种融合词汇增强和预训练模型的中医命名实体识别方法LEBERT-BILSTM-CRF。该方法从词汇增强和预训练模型融合的角度进行优化,将词汇信息输入到BERT模型中进行特征学习,达到划分词类边界和区分词类属性的目的,提高中医医案命名实体识别的精度。实验结果表明,在文中构建的中医病例数据集上针对10个实体进行命名实体识别时,提出的基于LEBERT-BILSTM-CRF的中医案例命名实体识别模型综合准确率、召回率、F1分别为88.69%,87.4%,88.1%,高于BERT-CRF,LEBERT-CRF等常用命名实体识别模型。
中图分类号:
[1]JI T,SU S L,SHANG E X,et al.Determining the rules of traditional Chinese medicine on treatment of consumptive thirst based on association rules mining[J].China Journal of Traditional Chinese Medicine and Pharmacy,2016,31(12):4982-4986. [2]XU Z H.Statistical Model based Chinese Named Entity Recognition Methods and its Application to Medical Records[D].Beijing:Beijing University of Chemical Technology,2017. [3]GAO J Y,LIU Z,YANG T,et al.Research on Named Entity Extraction of TCM Clinical Medical Records Symptoms Based on Conditional Random Field[J].Modernization of Traditional Chinese Medicine and Materia Medica-World Science and Technology,2020,22(6):1947-1954. [4]ZHAO Z H,YANG Z H,LUO L,et al.Disease named entity recognition from biomedical literature using a novel convolu-tional neural network[J].BMC Medical Genomics,2017,10(S5):73. [5]CAO C P,GUAN J P.Clinical text named entity recognition based on E-CNN and BLSTM -CRF[J].Application Research of Computers,2019,36(12):3748-3751. [6]GUO X R,LUO P,WANG W L.Chinese named entity recognition based on Transformer encoder[J].Journal of Jilin University(Engineering and Technology Edition),2021,51(3):989-995. [7]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of Deep Bidirectional Transformers for Language Understanding[J].arXiv:1810.04805,2018. [8]YAN H,DENG B,LI X,et al.TENER:Adapting Transformer Encoder for Named Entity Recognition[J].arXiv:1911.04474,2019. [9]LASRI K,LENCI A,POIBEAU T.Does BERT really agree?Fine-grained Analysis of Lexical Dependence on a Syntactic Task[J].arXiv:2204.06889,2022. [10]MA R,PENG M,ZHANG Q,et al.Simplify the Usage of Lexicon in Chinese NER[C]//Proceedings of the 58th ANNUAL Meeting of the Association for Computational Linguistics.2020:5951-5960. [11]LIU W,FU X,ZHANG Y,et al.Lexicon Enhanced Chinese Sequence Labeling Using BERT Adapter[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2021:5847-5858. [12]REN Y,YU H,YANG H,et al.Recognition of quantitative indicator of fishery standard using attention mechanism and the BERT+BiLSTM+CRF model[J].Transactions of the Chinese Society of Agricultural Engineering,2021,37(10):135-141. [13]LIU J G,XIA C H.Innovative deep neural network modeling for fine-grained Chinese entity recognition[J].Electronics,2020,9(6):1001. [14]LIAO X F,XIE S S.Chinese Named Entity Recognition Based on Attention Mechanism Feature Fusion[J].Computer Engineering,2023,49(4):256-262. [15]LAN Z,CHEN M,GOODMAN S,et al.ALBERT:A Lite BERT for Self-supervised Learning of Language Representations[J].arXiv:1909.11942,2019. |
|