计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230600121-8.doi: 10.11896/jsjkx.230600121
朱进1, 陶传奇1,2,3,4, 郭虹静1
ZHU Jin1, TAO Chuanqi1,2,3,4, GUO Hongjing1
摘要: 深度神经网络测试需要大量的测试数据来保证DNN的质量,但大多数测试输入缺乏标注信息,而且对测试输入进行标注会带来高昂的人工代价。为了解决标注成本的问题,研究人员提出了测试输入优先级方法,筛选高优先级的测试输入进行标注。然而,大多数优先级方法都受到有限情景的影响,例如难以筛选出高置信度的误分类输入。为了应对上述挑战,文中将差分测试技术应用于测试输入优先级,并提出了基于DNN模型输出差异的测试输入优先级方法(DeepDiff)。DeepDiff首先构建一个与原始模型具有相同功能的差分模型,然后计算测试输入在原始模型与差分模型之间的输出差异,最后为输出差异较大的测试输入分配更高的优先级。在实验验证中,我们对4个广泛使用的数据集和相应的8个DNN模型进行了研究。实验结果表明,在原始测试集上,DeepDiff的有效性比基线方法平均高出13.06%,在混合测试集上高出39.69%。
中图分类号:
[1]WANG Z,YAN M,LIU S,et al.A Review of Deep Neural Network Testing Research[J].Journal of Software,2020,31(5):1255-1275. [2]MA L,JUEFEI-XU F,ZHANG F,et al.Deepgauge:Multi-gra-nularity testing criteria for deep learning systems[C]//Procee-dings of the 33rd ACM/IEEE International Conference on Automated Software Engineering.2018:120-131. [3]PEI K,CAO Y,YANG J,et al.Deepxplore:Automated whitebox testing of deep learning systems[C]//Proceedings of the 26th Symposium on Operating Systems Principles.2017:1-18. [4]SUN Y,HUANG X,KROENING D,et al.Testing deep neural networks[J].arXiv:1803.04792,2018. [5]ZHANG J J,ZHANG X H.Multi-branch Convolutional Neural Network Pulmonary Nodule Classification Method and Its Interpretability[J].Computer Science,2020,47(9):129-134. [6]LI X Y,HE Z,LOU Y J,et al.Bilinear graph convolutional network for wetland remote sensing classification in the South China Sea region[J].Surveying and Mapping Bulletin,2023(5):44. [7]FENG Y,SHI Q,GAO X,et al.Deepgini:prioritizing massive tests to enhance the robustness of deep neural networks[C]//Proceedings of the 29th ACM SIGSOFT International Sympo-sium on Software Testing and Analysis.2020:177-188. [8]SHEN W,LI Y,CHEN L,et al.Multiple-boundary clustering and prioritization to promote neural network retraining[C]//Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering.2020:410-422. [9]AL-QADASI H,WU C,FALCONE Y,et al.DeepAbstraction:2-Level Prioritization for Unlabeled Test Inputs in Deep Neural Networks[C]//2022 IEEE International Conference On Artificial Intelligence Testing(AITest).IEEE,2022:64-71. [10]LI Y,LI M,LAI Q,et al.Testrank:Bringing order into unla-beled test instances for deep learning tasks[J].Advances in Neural Information Processing Systems,2021,34:20874-20886. [11]KIM J,FELDT R,YOO S.Guiding deep learning system testing using surprise adequacy[C]//2019 IEEE/ACM 41st International Conference on Software Engineering(ICSE).IEEE,2019:1039-1049. [12]BYUN T,SHARMA V,VIJAYAKUMAR A,et al.Input priori-tization for testing neural networks[C]//2019 IEEE International Conference On Artificial Intelligence Testing(AITest).IEEE,2019:63-70. [13]TAO Y,TAO C,GUO H,et al.TPFL:Test input prioritization for deep neural networks based on fault localization[C]//International Conference on Advanced Data Mining and Applications.Cham:Springer Nature Switzerland,2022:368-383. [14]MCKEEMAN W M.Differential testing for software[J].Digital Technical Journal,1998,10(1):100-107. [15]MA L,ZHANG F,SUN J,et al.Deepmutation:Mutation testing of deep learning systems[C]//2018 IEEE 29th International Symposium on Software Reliability Engineering(ISSRE).IEEE,2018:100-111. [16]HUMBATOVA N,JAHANGIROVA G,TONELLA P.DeepCrime:mutation testing of deep learning systems based on real faults[C]//Proceedings of the 30th ACM SIGSOFT International Symposium on Software Testing and Analysis.2021:67-78. [17]TAN P N,STEINBACH M,KUMAR V.Introduction to data mining[M].Pearson Education India,2016. [18]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and harnessing adversarial examples[J].arXiv:1412.6572,2014. [19]KURAKIN A,GOODFELLOW I J,BENGIO S.Adversarial examples in the physical world[M]//Artificial intelligence safety and security.Chapman and Hall/CRC,2018:99-112. [20]PAPERNOT N,MCDANIEL P,JHA S,et al.The limitations of deep learning in adversarial settings[C]//2016 IEEE European Symposium on Security and Privacy(EuroS&P).IEEE,2016:372-387. [21]CARLINI N,WAGNER D.Towards evaluating the robustness of neural networks[C]//2017 IEEE Symposium on Security and Privacy(PS).IEEE,2017:39-57. [22]WANG Z,YOU H,CHEN J,et al.Prioritizing test inputs for deep neural networks via mutation analysis[C]//2021 IEEE/ACM 43rd International Conference on Software Engineering(ICSE).IEEE,2021:397-409. |
|