计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230800025-6.doi: 10.11896/jsjkx.230800025
李文婷, 肖蓉, 杨肖
LI Wenting, XIAO Rong, YANG Xiao
摘要: 深度神经网络因模型自身结构的脆弱性,容易受对抗样本的攻击。现有的对抗样本生成方法具有较高的白盒攻击率,但在攻击其他DNN模型时可转移性有限。为了提升黑盒迁移攻击成功率,提出了一种利用拉普拉斯平滑梯度的可迁移对抗攻击方法。该方法在基于梯度的黑盒迁移攻击方法上做了改进,先利用拉普拉斯平滑对输入图片的梯度进行平滑,将平滑后的梯度输入利用梯度攻击的攻击方法中继续用于计算,旨在提高对抗样本在不同模型之间的迁移能力。拉普拉斯平滑的优点在于它可以有效地降低噪声和异常值对数据的影响,从而提高数据的可靠性和稳定性。通过在多个模型上进行评估,该方法进一步提高了对抗样本的迁移成功率,最佳的可迁移成功率比基线攻击方法高出2%。结果表明,该方法对于增强对抗攻击算法的迁移性能具有重要意义,为进一步研究和应用提供了新的思路。
中图分类号:
[1]DUAN R,MAO X,QIN A K,et al.Adversarial laser beam:Effective physical-world attack to DNNs in a blink[C]//Procee-dings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:16062-16071. [2]YAN H,WEI X:Efficient Sparse Attacks on Videos using Reinforcement Learning[C]//Proceedings of the 29th ACM International Conference on Multimedia.2021:2326-2334. [3]YE Q S,DAI X C.Current Status Analysis of Adversarial Sample Generation Techniques for Attack Classifiers[J].Computer Engineering and Applications,2020,56(5):34-42. [4]JIN S,LI M H,DU Y.Loss smoothing based countersample attack algorithm[J/OL].Journal of Beijing University of Aeronautics and Astronautics:1-10[2023-08-02]. [5]YANG W B,YUAN J D.Local time series black box counterattack attacks[J].Computer Science,2022,49(10):285-290. [6]LI J,GUOY M.Multi-Objective Class Adversarial Sample Generation Algorithm based on Generative Adversarial Networks[J].Computer Science,2022,49(2):83-91. [7]GOODFELLOW I J,SHLENS J,SZEGEDY C.Explaining and Harnessin adversarial examples[EB/OL].[2020-06-20].https://arxiv.org/abs/1412.6572. [8]KURAKIN A,GOODFELLOW I,BENGIO S.Adversarial ex-amples in the physical world[EB/OL].[2020-06-20].https://arxiv.org//abs/1607.02533. [9]DONG Y,LIAO F,PANG T,et al.Boosting adversarial attacks with momentum[C]//Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition.LongBeach.USA:IEEE Press,2018:9185-9193. [10]TU C C,TING P,CHEN P Y,et al.Autozoom:Autoencoder-based zeroth order optimization method for attacking black-box neural networks[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:742-749. [11]WANG X,HE K.Enhancing the transferability of adversarialattacks through variance tuning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:1924-1933. [12]WANG G,YAN H,WEI X.Enhancing transferability of adversarial examples with spatial momentum[C]//Chinese Confe-rence on Pattern Recognition and Computer Vision(PRCV).Cham:Springer International Publishing,2022:593-604. [13]DONG Y P,PANG T Y,SU H,et al.Evading defenses to transferable adversarial examples by translation-invariant attacks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:4312-4321. [14]BAI Z X,WANG H J,GUO K X.Adversarial sample generation method based on random transformation of image color[J].Computer Science,2023,50(4):88-95. [15]ZHAO H,CHANG Y K,WANG W J.A review of adversarial attack and defense methods of deep neural networks[J].Computer Science,2022,49(S2):662-672. [16]LIN J D,SONG C B,HE K,et al.Nesterov accelerated gradient and scale invariance for adversarial attacks[C]//International Conferenceon Learning Representations.2020. [17]CHEN X N,HU J M,ZHANG B J.Based on the model of black box method against the attacks start increasing mobility between[J].Computer Engineering,2021,47(8):162-169. [18]DING J,XU Z W.Anti-migration attacks based on RectifiedAdam and color invariance[J].Journal of software,2022,33(7):2525-2537. [19]XIE C H,ZHANG Z S,ZHOU Y Y,et al.Improving transfer-ability of adversarial examples with input diversity[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2019:2730-2739. [20]DONG Y P,LIAO F Z,PANG T Y,et al.Boosting adversarial attacks with momentum[C]//Proceedings of the IEEE Confe-rence on Computer Vision and Pattern Recognition.2018:9185-9193. [21]RUSSAKOVSKY O,DENG J,SU H,et al.Imagenet large scale visual recognition challenge[J].International Journal of Computer Vision,2015,115(3):211-25. [22]SZEGEDY C,VANHOUCKE V,IOFFE S,et al.Rethinking the inception architecture for computer vision[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:2818-2826. [23]SZEGEDY C,IOFFE S,VANHOUCKE V,et al.Inception-v4,inception-resnet and the impact of residual connections on lear-ning[C]//AAAI Conference on Artificial Intelligence.2017:4278-4284. [24]HE K M,ZHANG X Y,REN S Q,et al.Deep residual learning for image recognition[C]//Proceedings of the IEEE Conference on Computer Vision andPatternrecognition.2016:770-778. |
|