计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700077-8.doi: 10.11896/jsjkx.230700077
刘东奇1, 张琼1, 梁皓澜1,2, 张孜栋1, 曾祥君1
LIU Dongqi1, ZHANG Qiong1, LIANG Haolan1,2, ZHANG Zidong1, ZENG Xiangjun1
摘要: 高级量测体系(Advanced Metering Infrastructure,AMI)是建设智能电网及泛在电力物联网的关键一环。随着海量终端接入和异构通信网络组件的应用,AMI遭受网络攻击的风险大大增加。针对传统AMI网络攻击入侵检测方法存在主站计算压力过大、抗灾能力弱以及识别精度不足的问题,提出一种基于联邦学习的AMI入侵检测方法。首先,构建面向AMI的联邦学习入侵检测模型,在模型中集成联邦学习框架;然后,设计一种边缘侧的融合决策树的轻量级入侵检测算法,并提出跨台区云边协同的联合训练方法,实现跨台区经验的共享,提升入侵检测性能;最后,基于NSL-KDD数据集进行仿真验证,结果表明,与集中式、联邦学习与神经网络的入侵检测模型相比,所提方法准确率可达99.76%,误报率仅为0.17%。同时减少了检测时间,提高了通信效率,并且保证数据不离开本地,降低了数据隐私泄露的风险。
中图分类号:
[1]PANAGIOTIS I R G,PANAGIOTIS G S.Securing the Smart Grid:A Comprehensive Compilation of Intrusion Detection and Prevention Systems[J].IEEE Access,2019,7:46595-46620. [2]ZHANG L P,LU W,XIAO Y,et al.Anomaly Detection method of Smart Meters data based on GMM-LDAclustering feature Learning and PSO Support Vector Machine[C]//IEEESustai-nable Power and Energy Conference.Beijing,China,2019. [3]WANG X.Multi-domain Network Intrusion Detection Based on Attention-based Bidirectional LSTM[C]//2023 IEEE 6th Information Technology,Networking,Electronic and Automation Control Conference.Chongqing,China,2023:805-810. [4]YU Y,HENG Y H,LIANG Z Y,et al.AdaBoost-CNN:a hybrid method for electricity theft detection[C]//Asia Conference on Power and ElectricalEngineering(ACPEE).Chongqing,China,2021. [5]LIU F F.Research on Application of Intrusion Detection Algorithm Based on Deep Learning in AMI[D].Lanzhou:Lanzhou Jiaotong University,2020. [6]OZAY M,ESNAOLA I,VURAL F,et al.Machine LearningMethods for Attack Detection in the Smart Grid[J].IEEE Transactions on Neural Networks and Learning Systems,2016,27(8):1773-1786. [7]AHMED S,LEE Y D,SEUNG H H,et al.Unsupervised Ma-chine Learning-based Detection of Covert Data Integrity Assault in Smart Grid Networks Utilizing Isolation Forest[J].IEEE Transactions on Information Forensics and Security,2019,14(10):2765-2777. [8]KURT M N,OGUNDIJO O,LI C,et al.Online Cyber-AttackDetection in Smart Grid:A Reinforcement Learning Approach[J].IEEE Transactions on Smart Grid,2018,10(5):5174-5185. [9]AN D,YANG Q,LIU W,et al.Defending Against Data Integrity Attacks in Smart Grid:A Deep Reinforcement Learning-Based Approach[J].IEEE Access,2019,7:110835-110845. [10]ZHANG Y C,WANG L F,SUN W Q,et al.Distributed IDS in a multi-layer network architecture of smart grids[J].IEEE Tran-sactions on Smart Grid,2011,2(4):796-808. [11]ALSEIARI F,AUNG Z.Real-time anomaly-based distributedintrusion detection systems for advanced Metering Infrastructure utilizing stream data mining[C]//International Conference on Smart Grid and Clean Energy Technologies.Offenburg,Germany,2016:148-153. [12]ZHAO R J,YIN Y,SHI Y,et al.Intelligent intrusion detection based on federated learning aided long short-term memory[J].Physical Communication,2020,42:1874-4907. [13]RAHMAN S,TOUT H,TALHI C,et al.Internet of things intrusion detection:Centralized,on-device,or federated learning?[J].IEEE Network,2020,34(6):310-317. [14]WANG R,MA C G,WU P.Intrusion detection method based on federated learning and convolutional neural network[J].Information Network Security,2020(4):47-54. [15]TANG Z,MIN Q Q.Line Fault Monitoring System of Distribution Network Based on Power Line Carrier and ZigBee Techno-logy[J].Journal of Electric Power Science and Technology,2012,27(1):70-74. [16]LUO H X,JIN X,QIAN B,et al.Security protection method ofintelligent terminal and smart electricity meter based on block chain[J].China Southern Power Grid Technology,2021,15(4):50-58. [17]ROBERTO M C.Modular Advanced Metering Infrastructure to Reduce Electricity Theft and a Cluster-Based Illegal Loads Detection[J].IEEE Latin America Transactions,2023,21(4):579-587. [18]ZHANG Y.Research on decision tree classification and pruning algorithm[D].Harbin:Harbin University of Technology,2009. [19]SHI W C.Research on industrial internet intrusion detectionmethod based on integrated learning[D].Changchun:Jilin University,2022. [20]JIANG H B,LIU B,YUAN W H.Research on Adaptive Random Search Algorithm Based on Metropolis Criterion[J].Science and Technology in Western China,2015,14(3):17-19. [21]JAHROMI A,KARIMIPOUR H,DEHGHANTANHA A,et al.Toward Detection and Attribution of Cyber-Attacks in IoT-Enabled Cyber-Physical Systems[J].IEEE Internet of Things Journal,2021,8(17):13712-13722. [22]ZHANG S C,XIE X Y,XU Y.Intrusion Detection MethodBased on DCNN[J].Journal of Tsinghua University(Natural Science Edition),2019,59(1):46-54. [23]MA Q,HU J H,YU Y J.Research on intrusion detection based on decision tree algorithm[J].Telecommunication Engineering Technology and Standardization,2022,35(5):33-39. |
|