计算机科学 ›› 2024, Vol. 51 ›› Issue (6A): 230700051-5.doi: 10.11896/jsjkx.230700051
陈向效, 崔鑫, 杜秦, 唐浩耀
CHEN Xiangxiao, CUI Xin, DU Qin, TANG Haoyao
摘要: 在软件定义网络(Software Defined Network,SDN)中,异常流量检测方法在实践中存在一些问题,主要体现在误报率高和虚警频繁等方面。为了应对网络中的异常流量攻击,研究人员开始探索机器学习异常流量检测方法。然而,机器学习方法面临着数据集庞大和数据维度高等挑战,这些因素影响了机器学习的效率和准确率,因此需要进行数据降维处理。主成分分析算法(Principal Component Analysis,PCA)作为基于线性变换的降维算法,存在一定的局限性,无法有效估计主成分。为了解决该问题,文中提出了一种改进的降维算法,即聚类高斯核主成分分析(C-means Gaussian Kernel Principal Component Analysis,CGKPCA),它扩展了非线性变换的能力。同时,还针对分类模型进行了改进,提出了改进的堆叠分类模型(Support Vector Machine Stacking,SVMS)。为了验证所提方法的有效性,文中使用开源数据集KDDCPU99和UNSW-NB15进行了实验。实验结果表明,所提出的二分类检测模型在性能指标上明显领先于其他模型。
中图分类号:
[1]China Internet Network Information Center Releases the 51stStatistical Report on the Development Status of the Internet in China[J].National Library Journal,2023,32(2):39. [2]ZHANG Y,CUI L,WANG W,et al.A survey on software defined networking with multiple controllers[J].Journal of Network and Computer Applications,2018,103:101-118. [3]LU J,ZHANG Z,HU T,et al.A Survey of Controller Place-ment Problem in Software in Software-Defined Networking[J].IEEE Access,2019,7:24290-24307. [4]LI H T,WANG R M,DONG W Y,et al.A GRU-based method for semi-supervised network traffic anomaly detection[J].Computer Science,2023,50(3):380-390. [5]LI X,ZHANG X,ZHANG P,et al.Fault data detection of traffic detector based on wavelet packet in the residual subspace associated with PCA[J].Applied Sciences,2019,9(17):3491. [6]WANG Y G,SHU Z Y,TIAN X.Incremental Kernel principle components subspace inference with mystrom approximation for Bayesian deep learning[J].IEEE Access,2021(9):36241-36251. [7]ZHANG Z F,WANG L M.Research on network intrusion detection algorithms based on machine learning[J].Computer Applications and Software,2022,39(10):336-343. [8]AL-FAWA’REH M,AL-FAYOUMI M,NASHWAN S,et al.Cyber threat intelligence using PCA-DNN model to detect abnormal network behavior[J].Egyptian Informatics Journal,2022,23(2):173-185. [9]MOHAMMADI M,RASHID T A,KARIM S H T,et al.Acomprehensive survey and taxonomy of the SVM-based intrusion detection systems[J].Journal of Network and Computer Applications,2021,178:102983. [10]KHOEI T T,AISSOU G,HU W C,et al.Ensemble learningmethods for anomaly intrusion detection system in smart grid[C]//2021 IEEE International Conference on Electro Information Technology(EIT).IEEE,2021:129-135. [11]ISLAM F B,NWAKANMA C I,LEE J M,et al.Enhancing Malicious Activity Classification of IoT Network Traffic Characteristics using Stacked Ensemble Learning[C]//2021 26th IEEE International Conference on Emerging Technologies and Factory Automation(ETFA).IEEE,2021:1-4. [12]LI Q Y,XINGH J.KPCA Anomaly Detection Method Based on Maximum Correlation Entropy[J].Computer Science,2022,49(8):267-272. [13]PENG Y,FENG S,JIA S,et al.Research on satellite anomaly detection method based on PCA-DNMFSC[J].Computer Simulation,2023,40(1):48-52,142. [14]ZHUANG H,WENG Z,HE R,et al.GKEAL:Gaussian Kernel Embedded Analytic Learning for Few-Shot Class Incremental Task[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:7746-7755. [15]ZHAO Y,YI P,ZHANG Z,et al.Anomaly detection method for SDN network edge switch[J].Computer Science,2023,50(1):362-372. [16]HONG S S,LEE E,KIM H.An Advanced Fitness Function Optimization Algorithm for Anomaly Intrusion Detection Using Feature Selection[J].Applied Sciences,2023,13(8):4958-4985. [17]ALMAIAH M A,ALMOMANI O,ALSAAIDAH A,et al.Performance Investigation of Principal Component Analysis for Intrusion Detection System Using Different Support Vector Machine Kernels[J].Electronics,2022,11(21):3571-3586. [18]SINGH C E,VIGILA S M C.Fuzzy based intrusion detectionsystem in MANET[J].Measurement:Sensors,2023,26:100578. [19]RAJAGOPAL S,KUNDAPUR P P,HAREESHA K S.A stacking ensemble for network intrusion detection using heterogeneous datasets[J].Security and Communication Networks,2020,2020:1-9. [20]DO XUAN C,THANH H,LAMN T.Optimization of network traffic anomaly detection using machine learning[J].International Journal of Electrical & Computer Engineering(2088-8708),2021,11(3):2360-2370. |
|