计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 108-115.doi: 10.11896/jsjkx.230400109
曾子辉1, 李超洋1,2, 廖清1,2
ZENG Zihui1, LI Chaoyang1,2, LIAO Qing1,2
摘要: 时间序列异常检测是工业界中一个重要的研究领域。当前的时间序列异常检测方法侧重于面向完整的时间序列数据进行异常检测,而没有考虑到包含工业场景中网络异常、传感器损坏等所导致的缺失值的时间序列异常检测任务。文中针对工业场景中更加常见的含缺失值的时间序列异常检测任务,提出了一种基于注意力重新表征的时间序列异常检测算法MMAD(Missing Multivariate Time Series Anomaly Detection)。具体来说,MMAD首先将包含缺失值的时间序列数据通过时间位置编码对时间序列中不同时间戳的空间关联进行建模,然后通过掩码注意力表征模块学习不同时间戳之间数据的关联关系并将其表征为一个高维的嵌入式编码矩阵,从而将包含缺失值的多元时间序列表示为不含缺失值的高维表征,最后引入条件标准化流对该表征进行重建,以重建概率作为异常评分,重建概率越小代表样本越异常。在3个经典时间序列数据集上进行实验,结果表明,相比其他基线方法,MMAD性能平均提升了11%,验证了MMAD在缺失值场景下进行多元时间序列异常检测的有效性。
中图分类号:
[1]CHOI K,YI J,PARK C,et al.Deep Learning for Anomaly Detection in Time-series Data:Review,Analysis,and Guidelines[J].IEEE Access,2021,9:120043-120065. [2]SUN Y,LI S H,CUI C,et al.Outlier Detection Method Basedon Gauss Calibration Function for Power User Data[J].Grid Technology,2018,42(5):1595-1606. [3]PENG C,WANG L W,HU W L.Electromagnetic SpectrumAnomaly Detection Algorithm Based on Depth Feature Fusion [J].Journal of Electronics,2022,50(6):1359-1369. [4]SUN C F,LU W M,DAI H D,et al.A Small Sample Data Augmentation Method Based on Time GAN and OCSVM for Multivariate Degenerated Equipment[J].Journal of Electronics,2022,50(11):2678-2687. [5]ZHANG R B,ZUO Y C,ZHOU Z L,et al.Multimodal Generative Adversarial Networks Based Multivariate Time SeriesAnomaly Detection[J].Computer Science,2023,50(5):355-362. [6]ZHANG J E,WU D,BOULET B.Time Series Anomaly Detection for Smart Grids:A Survey[C]//2021 IEEE Electrical Po-wer and Energy Conference(EPEC).IEEE,2021:125-130. [7]PANG G,SHEN C,CAO L,et al.Deep Learning for Anomaly Detection:A Review[J].ACM Computing Surveys(CSUR),2021,54(2):1-38. [8]WENING P,SCHMIDL S,PAPENBROCK T.TIMEEVAL:ABenchmarking Toolkit for Time Series Anomaly Detection Algorithms[J].Proceedings of the VLDB Endowment,2022,15(12):3678-3681. [9]MUNIR M,SIDDIQUI S A,DENGEL A,et al.DEEPANT:A Deep Learning Approach for Unsupervised Anomaly Detection in Time Series[J].IEEE Access,2018,7:1991-2005. [10]HUNDMAN K,CONSTANTINOU V,LAPORTE C,et al.Detecting Spacecraft Anomalies Using LSTMs and Nonparametric Dynamic Thresholding[C]//Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2018:387-395. [11]SU Y,ZHAO Y,NIU C,et al.Robust Anomaly Detection for Multivariate Time Series Through Stochastic Recurrent Neural Network[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:2828-2837. [12]CHEN Z,CHEN D,ZHANG X,et al.Learning Graph Structures with Transformer for Multivariate Time-Series Anomaly Detection in IOT[J].IEEE Internet of Things Journal,2021,9(12):9179-9189. [13]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isAll You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [14]DENG A,HOOI B.Graph NeuralNetwork-Based Anomaly Detection in Multivariate Time Series[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2021:4027-4035. [15]ZONG B,SONG Q,MIN M R,et al.Deep Autoencoding Gaus-sian Mixture Model for Unsupervised Anomaly Detection[C]//International Conference on Learning Representations.2018. [16]DAI E Y,CHEN J.Graph-Augmented Normalizing Flows for Anomaly Detection of Multiple Time Series[C]//International Conference on Learning Representations.2022. [17]AUDIBERT J,MICHIARDI P,GUYARD F,et al.USAD:Unsupervised Anomaly Detection on Multivariate Time Series[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:3395-3404. [18]CHEN X,DENG L,HUANG F,et al.DAEMON:Unsupervised Anomaly Detection and Interpretation for Multivariate Time Series[C]//2021 IEEE 37th International Conference on Data Engineering (ICDE).IEEE,2021:2225-2230. [19]LI D,CHEN D,JIN B,et al.MAD-GAN:Multivariate Anomaly Detection for Time Series Data with Generative Adversarial Networks[C]//Artificial Neural Networks and Machine Lear-ning-ICANN.2019:703-716. [20]CHEN S W,LI J,XUAN J X,et al.LSTM-GAN:Unsupervised Anomaly Detection for Time Series Fusion of GAN and Bi-LSTM[J].Journal of Chinese Computer Systems,2024,45(1):123-131. [21]REZENDE D,MOHAMED S.Variational Inference with Nor-malizing Flows[C]//International Conference on Machine Learning.PMLR,2015:1530-1538. [22]GOH J,ADEPU S,JUNEJO K N,et al.A Dataset to Support Research in The Design of Secure Water Treatment Systems[C]//International Conference on Critical Information Infrastructures Security.Springer,2016:88-99. |
|