计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 140-145.doi: 10.11896/jsjkx.230400066

• 数据库&大数据&数据科学 • 上一篇    下一篇

基于多嵌入融合的top-N推荐

杨真真1, 王东涛1, 杨永鹏1,2, 华仁玉1   

  1. 1 南京邮电大学宽带无线通信与传感网技术教育部重点实验室 南京 210023
    2 南京信息职业技术学院网络与通信学院 南京 210023
  • 收稿日期:2023-04-11 修回日期:2023-08-31 出版日期:2024-07-15 发布日期:2024-07-10
  • 通讯作者: 杨真真(yangzz@njupt.edu.cn)
  • 基金资助:
    国家自然科学基金(62171232);南京邮电大学宽带无线通信与传感网技术教育部重点实验室开放研究基金(JZNY202113);江苏省研究生科研与实践创新计划项目(KYCX22_0955,SJCX23_0251);南京邮电大学科研项目(NY220207)

Multi-embedding Fusion Based on top-N Recommendation

YANG Zhenzhen1, WANG Dongtao1, YANG Yongpeng1,2, HUA Renyu1   

  1. 1 Key Laboratory of Ministry of Education in Broadband Wireless Communication, Sensor Network Technology, Nanjing University of Posts, Telecommunications, Nanjing 210023, China
    2 School of Network and Communication,Nanjing Vocational College of Information Technology,Nanjing 210023,China
  • Received:2023-04-11 Revised:2023-08-31 Online:2024-07-15 Published:2024-07-10
  • About author:YANG Zhenzhen,born in 1984,Ph.D,associate professor.Her main research interests include deep learning and multimedia information processing.
  • Supported by:
    National Natural Science Foundation of China(62171232),Open Research Fund of Key Lab of Broadband Wireless Communication and Sensor Network Technology,Ministry of Education(JZNY202113),Postgraduate Research & Practice Innovation Program of Jiangsu Province(KYCX22_0955,SJCX23_0251) and Nanjing University of Posts and Telecommunications Science Fund(NY220207).

摘要: 异构信息网络(Heterogeneous Information Network,HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-N推荐的多嵌入融合推荐(Multi-embedding Fusion Recommendation,MFRec)模型。首先,该模型在用户和项目学习分支中都采用对象上下文表示网络,充分利用上下文信息以放大局部特征,增强相邻节点的交互性;其次,将空洞卷积和空间金字塔池化引入元路径学习分支,以便获取多尺度信息并增强元路径的节点表示;然后,采用多嵌入融合模块以便更好地进行用户、项目以及元路径的嵌入融合,细粒度地进行多嵌入之间的交互学习,并强调了各特征的不同重要性程度;最后,在两个公共推荐系统数据集上进行了实验,结果表明所提模型MFRec优于现有的其他top-N推荐系统模型。

关键词: 异构信息网络, 推荐系统, top-N推荐, 多嵌入融合, 注意力机制

Abstract: Heterogeneous information network(HIN) is widely used in recommender systems since its rich semantic and structu-ral information.Although the HIN and the network embedding have achieved good results in recommender systems,the local feature amplification,the interaction of embedding vectors,and the multi-embedding aggregation methods have not been fully consi-dered.To overcome these problems,a new multi-embedding fusion recommendation(MFRec) model is proposed.Firstly,object-contextual representation network is introduced to both branches of user and node representation learning to amplify local features and enhance the interaction of neighbor nodes.Subsequently,the dilated convolution and the spatial pyramid pooling are introduced to the meta-paths learning to obtain multi-scale information and enhance the representation of meta-paths.In addition,the multi-embedding fusion module is introduced to better carry out the embedding fusion of users,items and meta-paths.The interaction between embeddings is carried out in a fine-grained way,and the different importance of each feature is emphasized.Finally,experimental results on two public recommendation system datasets show that the proposed MFRec has better performance than other existing top-N recommendation models.

Key words: Heterogeneous information network, Recommender system, Top-N recommendation, Multi-embedding fusion, Attention mechanism

中图分类号: 

  • TP391
[1]WU J,XIE H,JIANG W H.Survey of graph neural network in recommendation system[J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2249-2263.
[2]AIAEGHU C.An optimized item-based collaborative filteringalgorithm[J].Journal of Ambient Intelligence and Humanized Computing,2021,12(12):10629-10636.
[3]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.2009:452-461.
[4]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems [J].Computer,2009,42(8):30-37.
[5]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182.
[6]SHUAI J,ZHANG K,WU L,et al.A review-aware graph con-trastive learning framework for recommendation[C]//Procee-dings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1283-1293.
[7]ZHENG C,FU X,DONG L.Recommendation model based onmulti-aspect latent feature and neural network[J].Journal of Chinese Computer Systems.2022,43(1):35-41.
[8]ZHAO B W,HU L,YOU Z H,et al.Hingrl:predicting drug-disease associations with graph representation learning on hete-rogeneous information networks[J].Briefings in Bioinformatics,2022,23(1):1-15.
[9]WANG X,BO D,SHI C,et al.A survey on heterogeneous graph embedding:methods,techniques,applications and sources[J].arXiv:2011.14867,2022.
[10]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032.
[11]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370.
[12]HU B,SHI C,ZHAO W X,et al.Leveraging meta-path basedcontext for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD Interna-tional Conference on Knowledge Discovery & Data Mining.2018:1531-1540.
[13]JIN J,QIN J,FANG Y,et al.An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:75-84.
[14]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10.
[15]ZHANG W,DU T,WANG J.Deep learning over multi-field ca-tegorical data[C]//European Conference on Information Retrie-val.2016:45-57.
[16]NGUYEN Q C,PHAM M T,PHAN DD,et al.Efficient Multi-Organ Segmentation Using HRNet And OCRNet[C]//2022 RIVF International Conference on Computing and Communication Technologies.2022:542-547.
[17]ZHUANG C,LU Z,WANG Y,et al.ACDNet:Adaptively combined dilated convolution for monocular panorama depth estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022,36(3):3653-3661.
[18]ZHOU W,LIU C,LEI J,et al.HFNet:Hierarchical feedback network with multilevel atrous spatial pyramid pooling for RGB-D saliency detection [J].Neurocomputing,2022,490:347-357.
[19]HUANG T,ZHANG Z,ZHANG J.FiBiNET:combining featureimportance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:169-177.
[20]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141.
[21]DONG Y,CHAWLA N V,SWAMI A.Metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!