计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 140-145.doi: 10.11896/jsjkx.230400066
杨真真1, 王东涛1, 杨永鹏1,2, 华仁玉1
YANG Zhenzhen1, WANG Dongtao1, YANG Yongpeng1,2, HUA Renyu1
摘要: 异构信息网络(Heterogeneous Information Network,HIN)凭借其丰富的语义信息和结构信息被广泛应用于推荐系统中,虽然取得了很好的推荐效果,但较少考虑局部特征放大、信息交互和多嵌入聚合等问题。针对这些问题,提出了一种新的用于top-N推荐的多嵌入融合推荐(Multi-embedding Fusion Recommendation,MFRec)模型。首先,该模型在用户和项目学习分支中都采用对象上下文表示网络,充分利用上下文信息以放大局部特征,增强相邻节点的交互性;其次,将空洞卷积和空间金字塔池化引入元路径学习分支,以便获取多尺度信息并增强元路径的节点表示;然后,采用多嵌入融合模块以便更好地进行用户、项目以及元路径的嵌入融合,细粒度地进行多嵌入之间的交互学习,并强调了各特征的不同重要性程度;最后,在两个公共推荐系统数据集上进行了实验,结果表明所提模型MFRec优于现有的其他top-N推荐系统模型。
中图分类号:
[1]WU J,XIE H,JIANG W H.Survey of graph neural network in recommendation system[J].Journal of Frontiers of Computer Science and Technology,2022,16(10):2249-2263. [2]AIAEGHU C.An optimized item-based collaborative filteringalgorithm[J].Journal of Ambient Intelligence and Humanized Computing,2021,12(12):10629-10636. [3]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence.2009:452-461. [4]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems [J].Computer,2009,42(8):30-37. [5]HE X,LIAO L,ZHANG H,et al.Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web.2017:173-182. [6]SHUAI J,ZHANG K,WU L,et al.A review-aware graph con-trastive learning framework for recommendation[C]//Procee-dings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval.2022:1283-1293. [7]ZHENG C,FU X,DONG L.Recommendation model based onmulti-aspect latent feature and neural network[J].Journal of Chinese Computer Systems.2022,43(1):35-41. [8]ZHAO B W,HU L,YOU Z H,et al.Hingrl:predicting drug-disease associations with graph representation learning on hete-rogeneous information networks[J].Briefings in Bioinformatics,2022,23(1):1-15. [9]WANG X,BO D,SHI C,et al.A survey on heterogeneous graph embedding:methods,techniques,applications and sources[J].arXiv:2011.14867,2022. [10]WANG X,JI H,SHI C,et al.Heterogeneous graph attention network[C]//The World Wide Web Conference.2019:2022-2032. [11]SHI C,HU B,ZHAO W X,et al.Heterogeneous information network embedding for recommendation[J].IEEE Transactions on Knowledge and Data Engineering,2018,31(2):357-370. [12]HU B,SHI C,ZHAO W X,et al.Leveraging meta-path basedcontext for top-n recommendation with a neural co-attention model[C]//Proceedings of the 24th ACM SIGKDD Interna-tional Conference on Knowledge Discovery & Data Mining.2018:1531-1540. [13]JIN J,QIN J,FANG Y,et al.An efficient neighborhood-based interaction model for recommendation on heterogeneous graph[C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:75-84. [14]CHENG H T,KOC L,HARMSEN J,et al.Wide & deep lear-ning for recommender systems[C]//Proceedings of the 1st Workshop on Deep Learning for Recommender Systems.2016:7-10. [15]ZHANG W,DU T,WANG J.Deep learning over multi-field ca-tegorical data[C]//European Conference on Information Retrie-val.2016:45-57. [16]NGUYEN Q C,PHAM M T,PHAN DD,et al.Efficient Multi-Organ Segmentation Using HRNet And OCRNet[C]//2022 RIVF International Conference on Computing and Communication Technologies.2022:542-547. [17]ZHUANG C,LU Z,WANG Y,et al.ACDNet:Adaptively combined dilated convolution for monocular panorama depth estimation[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022,36(3):3653-3661. [18]ZHOU W,LIU C,LEI J,et al.HFNet:Hierarchical feedback network with multilevel atrous spatial pyramid pooling for RGB-D saliency detection [J].Neurocomputing,2022,490:347-357. [19]HUANG T,ZHANG Z,ZHANG J.FiBiNET:combining featureimportance and bilinear feature interaction for click-through rate prediction[C]//Proceedings of the 13th ACM Conference on Recommender Systems.2019:169-177. [20]HU J,SHEN L,SUN G.Squeeze-and-excitation networks[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2018:7132-7141. [21]DONG Y,CHAWLA N V,SWAMI A.Metapath2vec:Scalable representation learning for heterogeneous networks[C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. |
|