计算机科学 ›› 2024, Vol. 51 ›› Issue (7): 422-429.doi: 10.11896/jsjkx.230400177

• 信息安全 • 上一篇    

基于节点影响力的区块链匿名交易追踪方法

李致远1,2,3, 徐丙磊1, 周颖仪1   

  1. 1 江苏大学计算机科学与通信工程学院 江苏 镇江 212013
    2 江苏省工业网络安全技术重点实验室 江苏 镇江 212013
    3 江苏省泛在数据智能感知与分析应用工程研究中心 江苏 镇江 212013
  • 收稿日期:2023-04-25 修回日期:2023-09-23 出版日期:2024-07-15 发布日期:2024-07-10
  • 通讯作者: 李致远(lizhiyuan@ujs.edu.cn)
  • 基金资助:
    国家重点研发计划(2020YFB1005503);江苏省自然科学基金面上项目(BK20201415)

Blockchain Anonymous Transaction Tracking Method Based on Node Influence

LI Zhiyuan1,2,3, XU Binglei1, ZHOU Yingyi1   

  1. 1 School of Computer Science and Communication Engineering,Jiangsu University,Zhenjiang,Jiangsu 212013,China
    2 Jiangsu Provincial Key Laboratory of Industrial Network Security Technology,Zhenjiang,Jiangsu 212013,China
    3 Jiangsu Province Ubiquitous Data Intelligent Perception and Analysis Application Engineering Research Center,Zhenjiang,Jiangsu 212013,China
  • Received:2023-04-25 Revised:2023-09-23 Online:2024-07-15 Published:2024-07-10
  • About author:LI Zhiyuan,born in 1981,Ph.D,postdoctor,associate professor,is a senior member of CCF(No.11049S).His main research interests include mobile social networks,Internet of Things,and software defined networks and cybersecurity.
  • Supported by:
    National Key Research and Development Program of China(2020YFB1005503) and Jiangsu Provincial Natural Science Foundation Project(BK20201415).

摘要: 随着区块链技术的快速发展,借助虚拟货币进行非法交易的行为越来越普遍,且数量仍在快速增长。为打击该类犯罪行为,目前主要从网络分析技术和图数据挖掘等角度研究区块链交易数据,以进行区块链交易追踪。然而,现有的研究在有效性、普适性以及效率等方面存在不足,且无法对新注册地址进行有效追踪。针对上述问题,文中提出了一种基于节点影响力的账户余额模型区块链交易追踪方法NITT,旨在追踪特定目标账户模型地址的主要资金流向。相比传统方法,该方法引入时间策略,降低了图数据规模,同时采用多重权重分配策略,筛选出了更有影响力的重要账户地址。在真实数据集上进行实验,结果表明,所提方法在有效性、普适性和效率等方面具有较大的优势。

关键词: 区块链, 匿名交易追踪, 账户余额模型, 节点影响力

Abstract: With the rapid development of blockchain technology,illegal transactions with the help of virtual currencies are beco-ming increasingly common and still growing rapidly.In order to combat such crimes,blockchain transaction data are currently stu-died mainly from the perspectives of network analysis technology and graph data mining for blockchain transaction tracking.However,the existing studies are deficient in terms of effectiveness,generalizability,and efficiency,and cannot effectively track newly registered addresses.To address the above issues,a node-influence-based blockchain transaction tracking method NITT for account balance models is proposed in the paper,aiming to track the main fund flow of a specific target account model address.Compared with traditional methods,the proposed method introduces a temporal strategy to reduce the graph data size.It also filters out more influential and important account addresses by using a multiple weight assignment strategy.Experimental results on real datasets show that the proposed method has greater advantages in terms of effectiveness,generalizability and efficiency.

Key words: Blockchain, Anonymous transaction tracking, Account balance model, Node influence

中图分类号: 

  • TP301
[1]TREIBLMAIER H,GARAUS M.Using blockchain tosignal quality in the food supply chain:The impact on consumer purchase intentions and the moderating effect of brand familiarity[J].International Journal of Information Management,2023,68:102514.
[2]ZHOU X,YANG W,TIAN X.Detecting Phishing Accounts on Ethereum Based on Transaction Records and EGAT[J].Electronics,2023,12(4):993.
[3]XIA Y,LIU J,WU J.Phishing detection on ethereum via attri-buted ego-graph embedding[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2022,69(5):2538-2542.
[4]GU Z,LIN D,WU J.On-chain analysis-based detection of ab-normal transaction amount on cryptocurrency exchanges[J].Physica A:Statistical Mechanics and its Applications,2022,604:127799.
[5]LIAO Z,ZHENG Z,CHEN X,et al.SmartDagger:a bytecode-based static analysis approach for detecting cross-contract vulnerability[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.2022:752-764.
[6]ZHENG P,ZHENG Z,LUO X.Park:Accelerating smart contract vulnerability detection via parallel-fork symbolic execution[C]//Proceedings of the 31st ACM SIGSOFT International Symposium on Software Testing and Analysis.2022:740-751.
[7]Chainalysis.The 2022 Crypto Crime Report[EB/ OL].ht-tps://www.chainalysis.com/blog/2024-crypto-crime-report-in-troduction/.
[8]WU J,LIU J,ZHAO Y,et al.Analysis of cryptocurrency transactions from a network perspective:An overview[J].Journal of Network and Computer Applications,2021,190:103139.
[9]ZHENG B,ZHU L,SHEN M,et al.Malicious bitcoin transaction tracing using incidence relation clustering[C]//Mobile Networks and Management:9th International Conference,MONAMI 2017.2018:313-323.
[10]MÖSER M,BÖHME R,BREUKER D.Towards risk scoring of Bitcoin transactions[C]//Financial Cryptography and Data Security:FC 2014 Workshops,BITCOIN and WAHC 2014.Christ Church,Barbados,2014:16-32.
[11]ANDERSON R.Making Bitcoin Legal(Transcript of Discus-sion)[C]//Security Protocols XXVI:26th International Workshop.Cambridge,UK,2018:254-265.
[12]TOVANICH N,CAZABET R.Pattern Analysis of MoneyFlows in the Bitcoin Blockchain[C]//International Conference on Complex Networks and Their Applications.Cham:Springer International Publishing,2022:443-455.
[13]ZHAO C,GUAN Y.A graph-based investigation of bitcointransactions[C]//Advances in Digital Forensics XI:11th IFIP WG 11.9 International Conference.Orlando,FL,USA,2015:79-95.
[14]PHETSOUVANH S,OGGIER F,DATTA A.Egret:Extortion graph exploration techniques in the bitcoin network[C]//2018 IEEE International Conference on Data Mining Workshops(ICDMW).2018:244-251.
[15]YOUSAF H,KAPPOS G,MEIKLEJOHN S.Tracing transactions across cryptocurrency ledgers[C]//28th USENIX Security Symposium(USENIX Security 19).2019:837-850.
[16]HASLHOFER B,KARL R,FILTZ E.O Bitcoin Where ArtThou? Insight into Large-Scale Transaction Graphs[C]//SEMANTiCS(Posters,Demos,SuCCESS).2016.
[17]ZHU H,NIU W,LIAO X,et al.Attacker Traceability onEthereum through Graph Analysis[J/OL].Security and Communication Networks,2022.https://doi.org/10.1155/2022/3448950.
[18]CHEN T,LI Z,ZHU Y,et al.Understanding ethereum viagraph analysis[J].ACM Transactions on Internet Technology(TOIT),2020,20(2):1-32.
[19]ZHAO Y,LIU J,HAN Q,et al.Exploring EOSIO via graphcharacterization[C]//Blockchain and Trustworthy Systems:Second International Conference(BlockSys 2020).Dali,China,2020:475-488.
[20]LIN D,WU J,YUAN Q,et al.Modeling and understandingethereum transaction records via a complex network approach[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2020,67(11):2737-2741.
[21]SONG W,ZHANG W,WANG J,et al.Blockchain data analysis from the perspective of complex networks:Overview[J].Tsinghua Science and Technology,2022,28(1):176-206.
[22]MOTAMED A P,BAHRAK B.Quantitative analysis of crypt-ocurrencies transaction graph[J].Applied Network Science,2019,4(1):1-21.
[23]CHEN W,ZHANG T,CHEN Z,et al.Traveling the tokenworld:A graph analysis of ethereum erc20 token ecosystem[C]//Proceedings of The Web Conference 2020.2020:1411-1421.
[24]WU Z,LIU J,WU J,et al.TRacer:Scalable Graph-based Transaction Tracing for Account-based Blockchain Trading Systems[J].IEEE Transactions on Information Forensics and Security,2022,18:2609-2621.
[25]WU Z,LIU J,WU J,et al.Know Your Transactions:Real-time and Generic Transaction Semantic Representation on Blockchain &Web3 Ecosystem[C]//Proceedings of the ACM Web Conference 2023.2023:1918-1927.
[26]LIU J,ZHENG J,WU J,et al.FA-GNN:Filter and AugmentGraph Neural Networks for Account Classification in Ethereum[J].IEEE Transactions on Network Science and Engineering,2022,9:2579-2588.
[27]HUANG T,LIN D,WU J.Ethereum Account ClassificationBased on Graph Convolutional Network[J].IEEE Transactions on Circuits and Systems II:Express Briefs,2022,69(5):2528-2532.
[28]GU Z,LIN D,WU J.On-chain analysis-based detection of abnormal transaction amount on cryptocurrency exchanges[J].Physica A:Statistical Mechanics and its Applications,2022,604:127799.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!