计算机科学 ›› 2024, Vol. 51 ›› Issue (8): 429-439.doi: 10.11896/jsjkx.230600200
程安东1, 谢四江1,2,3, 刘昂1,4, 冯艺萌1
CHENG Andong1, XIE Sijiang1,2,3, LIU Ang1,4, FENG Yimeng1
摘要: 经典区块链中拜占庭容错共识机制使用的公钥数字签名在量子计算机的指数级加速下暴露出脆弱性,存在一定的安全风险。针对拜占庭容错共识机制不具有量子安全性的问题,提出了基于HotStuff的高效量子安全拜占庭容错共识机制EQSH(Efficient Quantum-Secured HotStuff)。首先,为解决现有无条件安全签名(Unconditionally Secure Signatures,USS)通信复杂度高的问题,提出了一种高效的多方环形量子数字签名(Efficient Multi-party Ring Quantum Digital Signatures,EMRQDSs)方案,该方案基于一种环形量子网络,在保证量子安全性、不可伪造性、不可抵赖性以及可转移性的同时,通信复杂度为O(n)。其次,为了消除量子敌手对门限签名的安全威胁,对HotStuff中使用的门限签名进行替换,提出了一种基于密钥分发中心的签名收集方案,该方案可以实现与门限签名同样的效果,通信复杂度为O(n),同时保证了量子安全性。最后,将上述两个方案相结合,应用于HotStuff中,提供了量子安全性;设计了一个起搏器保证了活性;简化了共识信息格式,使用流水线共识流程提高了共识效率。EQSH中没有使用量子纠缠等成本较高的技术,可在现有技术条件下实现,实用价值较高。相较于HotStuff,EQSH具有量子安全性。相较于其他非纠缠型量子安全拜占庭容错共识机制,EQSH首次将通信复杂度降为O(n),具有更佳的性能表现,且对于客户端量子线路数量的需求更低,有利于降低量子网络的架设成本。
中图分类号:
[1]LAMPORT L,SHOSTAK R,PEASE M.The Byzantine Gene-rals Problem[J].ACM Transactions on Programming Languages and Systems,1982,4(3):382-401. [2]CASTRO M,LISKOV B.Practical byzantine fault tolerance[C]//Proceedings of the Third Symposium on Operating Systems Design and Implementation.1999:173-186. [3]BUCHMAN E.Tendermint:Byzantinefault tolerance in the age of blockchains[D].Guelph:University of Guelph,2016. [4]BUCHMAN E,KWON J,MILOSEVIC Z.The latest gossip on BFT consensus[J].arXiv:1807.04938,2018. [5]YIN M,MALKHI D,REITER M K,et al.Hot-stuff:Bft con-sensus with linearity and responsiveness[C]//Proceedings of the 2019 ACM Symposium on Principles of Distributed Computing.2019:347-356. [6]SHOR P W.Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer[J].SIAM review,1999,41(2):303-332. [7]CHEN N,CUI S Y,YANG C G,et al.Blockchain facing quantum computing threats and countermeasures[J].Network Security and Informatization,2023(5):15-17. [8]FERNANDEZ-CARAMES T M,FRAGA-LAMAS P.Towards post-quantum blockchain:A review on blockchain cryptography resistant to quantum computing attacks[J].IEEE Access,2020,8:21091-21116. [9]LONE A H,NAAZ R.Demystifying cryptography behind blockchains and a vision for post-quantum blockchains[C]//2020 IEEE International Conference for Innovation in Technology(INOCON).IEEE,2020:1-6. [10]HANAOKA G,SHIKATA J,ZHENG Y,et al.Efficient unconditionally secure digital signatures[J].IEICE Transactions on Fundamentals of Electronics,Communications and Computer Sciences,2004,87(1):120-130. [11]RAJAN D,VISSER M.Quantum blockchain using entanglement in time[J].Quantum Reports,2019,1(1):3-11. [12]GAO Y L,CHEN X B,XU G,et al.A novel quantum blockchain scheme base on quantum entanglement and DPoS[J].Quantum Information Processing,2020,19:1-15. [13]WEN X J,CHEN Y Z,FAN X C,et al.Quantum blockchain system[J].Modern Physics Letters B,2021,35(20):2150343. [14]LI Q,WU J,QUAN J,et al.Efficient Quantum Blockchain With a Consensus Mechanism QDPoS[J].IEEE Transactions on Information Forensics and Security,2022,17:3264-3276. [15]YE F,ZHOU Z,LI Y.Quantum-assisted blockchain for IoTbased on quantum signature[J].Quantum Information Proces-sing,2022,21(9):1-22. [16]WANG W,YU Y,DU L.Quantum blockchain based on asymmetric quantum encryption and a stake vote consensus algorithm[J].Scientific Reports,2022,12(1):8606. [17]LIU A,CHEN X B,XU S,et al.A Secure Scheme Based on a Hybrid of Classical-Quantum Communications Protocols for Managing Classical Blockchains[J].Entropy,2023,25(5):811. [18]SUN X,SOPEK M,WANG Q,et al.Towards quantum-secured permissioned blockchain:Signature,consensus,and logic[J].Entropy,2019,21(9):887. [19]BENNET C H.Quantum Cryptography:Public Key Distribution and Coin Tossing[C]//Proceedings of the IEEE International Conference on Computers,Systems,and Signal Processing,Bangalore.1984:175-179. [20]ZHANG X,GAO F,QIN S,et al.Current Status and Future Development of Quantum Cryptographic Protocols[J].Strategic Study of Chinese Academy of Engineering,2022,24(4):145-155. [21]KIKTENKO E O,POZHAR N O,ANUFRIEV M N,et al.Quantum-secured blockchain[J].arXiv:1705.09258,2018. [22]AMIRI R,ABIDINA,WALLDEN P,et al.:Efficient Unconditionally Secure Signatures Using Universal Hashing[M]//Applied Cryptography and Network Security.Cham:Springer International Publishing,2018:143-162. [23]MURATOV F,LEBEDEV A,IUSHKEVICH N,et al.YAC:BFT consensus algorithm for blockchain[J].arXiv:1809.00554,2018. [24]SUN X,WANG Q L,KULICKI P,et al.Quantum-enhanced lo-gic-based blockchain i:Quantum honest-success byzantine agreement and qulogicoin[J].arXiv:1805.06768,2018. [25]CHEN B E,WANG B H,LAO N X.A quantum cryptographic blockchain based on DPoS extensions[J].Journal of Guangdong University of Technology,2021,38(2):34-38. [26]REN C,ZHAO H,JIANG H.Quantum Secured-Byzantine Fault Tolerance Blockchain Consensus Mechanism[J].Computer Science,2022,49(5):333-340. [27]WENG C X,GAO R Q,BAO Y,et al.Beating the fault-tole-rance bound and security loopholes for Byzantine agreement with a quantum solution[J].arXiv:2206.09159,2022. [28]YIN H L,FU Y,LI C L,et al.Experimental quantum secure network with digital signatures and encryption[J].National Science Review,2023,10(4):nwac228. [29]ARRAZOLA J M,WALLDEN P,ANDERSSON E.Multiparty quantum signature schemes[J].arXiv:1505.07509,2015. [30]CHOLVI V.Detectable quantum Byzantine agreement for anyarbitrary number of dishonest parties[J].arXiv:2112.09437,2021. [31]KRENDELEV S,SAZONOVA P.Parametric hash function resistant to attack by quantum computer[C]//2018 Federated Conference on Computer Science and Information Systems(FedCSIS).IEEE,2018:387-390. [32]CARTER J L,WEGMAN M N.Universal classes of hash functions[C]//Proceedings of the Ninth Annual ACM Symposium on Theory of Computing.1977:106-112. [33]LI B H,XIE Y M,CAO X Y,et al.One-Time Universal Hashing Quantum Digital Signatures without Perfect Keys[J].arXiv:2301.01132,2023. [34]KIKTENKO E O,ZELENETSKY A S,FEDOROV A K.Practical quantum multiparty signatures using quantum-key-distribution networks[J].Physical Review A,2022,105(1):012408. [35]PEASE M,SHOSTAK R,LAMPORT L.Reaching agreement in the presence of faults[J].Journal of the ACM(JACM),1980,27(2):228-234. [36]LAMPORT L,SHOSTAK R,PEASE M.The Byzantine Gene-rals Problem[J].ACM Transactions on Programming Languages and Systems,1982,4(3):382-401. [37]CAI X Q,WANG T Y,WEI C Y,et al.Cryptanalysis of multiparty quantum digital signatures[J].Quantum Information Processing,2019,18:1-12. [38]WALLDEN P,DUNJKO V,KENT A,et al.Quantum digitalsignatures with quantum-key-distribution components[J].ar-Xiv:1403.5551,2015. [39]QU W,ZHANG Y,LIU H,et al.Multi-party ring quantum di-gital signatures[J].JOSA B,2019,36(5):1335-1341. [40]LIM C C W,CURTY M,WALENTA N,et al.Concise security bounds for practical decoy-state quantum key distribution[J].arXiv:1311.7129,2014. [41]CAI R Y Q,SCARANI V.Finite-key analysis for practical implementations of quantum key distribution[J].arXiv:0811.2628,2009. [42]LUCAMARINI M,PATEL K A,DYNES J F,et al.Efficient decoy-state quantum keydistribution with quantified security[J].Optics Express,2013,21(21):24550-24565. [43]VITANOV A,DUPUIS F,TOMAMICHEL M,et al.Chainrules for smooth min-and max-entropies[J].IEEE Transactions on Information Theory,2013,59(5):2603-2612. [44]TOMAMICHEL M,LEVERRIER A.A largely self-containedand complete security proof for quantum key distribution[J].arXiv:1506.08458,2017. |
|