计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 23-30.doi: 10.11896/jsjkx.230400010

• 高性能计算 • 上一篇    下一篇

基于机器学习原子势函数的原子动力学蒙特卡洛程序TensorKMC的优化

刘人僪1,2, 陈欣3, 商红慧2, 张云泉2   

  1. 1 大连海洋大学信息工程学院 辽宁 大连 116023
    2 中国科学院计算技术研究所计算机体系结构国家重点实验室 北京 100190
    3 北京应用物理与计算数学研究所 北京 100088
  • 收稿日期:2023-04-03 修回日期:2023-05-10 出版日期:2024-09-15 发布日期:2024-09-10
  • 通讯作者: 陈欣(chen_xin@iapcm.ac.cn)
  • 作者简介:(liurenyudlou@163.com)
  • 基金资助:
    国家重点研发计划(2020YFB1709500);国家自然科学基金青年科学基金(12004046)

Optimization of Atomic Kinetics Monte Carlo Program TensorKMC Based on Machine Learning Atomic Potential Functions

LIU Renyu1,2, CHEN Xin3, SHANG Honghui2, ZHANG Yunquan2   

  1. 1 College of Information Engineering,Dalian Ocean University,Dalian,Liaoning 116023,China
    2 State Key Laboratory of Computer Archintecture,Institute of Computing Technology,Chinese Academy of Sciences,Beijing 100190,China
    3 Beijing Institute of Applied Physics and Computational Mathematics,Beijing 100088,China
  • Received:2023-04-03 Revised:2023-05-10 Online:2024-09-15 Published:2024-09-10
  • About author:LIU Renyu,born in 1997,postgraduate.His main research interests is high-performance computing.
    CHEN Xin,born in 1991,Ph.D,assistant professor.His main research interests include atomic potential funictions and high-performance computing.
  • Supported by:
    National Key Research and Development Program of China(2020YFB1709500) and Young Scientists Fund of the National Natural Science Foundation of China(12004046).

摘要: 核反应堆压力容器是核电站中最重要的部件之一,在使用过程中通常会受到辐照损伤,这极大影响了其使用寿命,给核电站的安全带来隐患。原子动力学蒙特卡洛方法(AKMC)是研究材料辐照损伤的有效理论方法,可以与计算机数值模拟进行结合来研究压力容器的微结构演变。辐照损伤的材料存在缺陷,原子间相互作用建模时需要考虑非球对称相互作用,但TensorKMC在计算时并没有考虑到原子的角向作用。文中针对该问题,提出了一种包含角向相互作用、可以与TensorKMC的三重编码完美结合的指纹建模方法,并可利用多重度对角向指纹的计算过程进行化简。文中在TensorKMC程序中实现了该方法,测试结果显示角向指纹对势函数的精度有显著影响,最大角动量越高,势函数越精准,程序的模拟耗时也会显著增加。同时,也针对TensorKMC的原子势函数的激活函数开展了测试,结果表明梯度光滑的Softplus和SquarePlus相比初版TensorKMC所用的ReLU在拟合高维势能面时有明显的优势,在最大角动量较低时ReLU有性能优势,但随着最大角动量的增大,不同激活函数对总体模拟时间几乎无特别影响。因此,在实际研究中推荐使用梯度光滑的激活函数。

关键词: 动力学蒙特卡洛, 原子指纹, 神经网络势

Abstract: The nuclear reactor pressure vessel is a crucial component in a nuclear power plant,but it is susceptible to damage from irradiation during its use.This damage greatly affects its service life and poses a potential safety hazard.The atomic kinetics Monte Carlo(AKMC) method is an effective theoretical method for studying the irradiation damage of materials.It can be combined with numerical computer simulations to study the microstructural evolution of pressure vessels.Since irradiated damaged materials have defects,the modeling of interatomic interactions must consider non-spherical symmetric interactions.However,the TensorKMC method does not account for the angular interactions of atoms in its calculations.To address this issue,this paper proposes a fingerprint modeling method that includes angular interactions.It can be perfectly combined with the triple encoding of TensorKMC,and the computational process of angular fingerprinting can be simplified by using multiple weight.We have implemented this method in the TensorKMC program.The test results show that the angular fingerprint has a significant impact on the accuracy of the potential function.The higher the maximum angular momentum,the more accurate the potential function is.However,the simulation time consumed by the program will increase significantly.We also test the activation functions for the atomic potential function of TensorKMC.The results show that the gradient-smooth Softplus and SquarePlus have a significant advantage over the ReLU used in the initial version of TensorKMC in fitting the high-dimensional potential surface.The ReLU has a performance advantage at low maximum angular momentum,but as the maximum angular momentum increases,the different activation functions have almost no particular effect on the overall simulation time.Therefore,we recommend using gradient-smooth activation functions in practical studies.

Key words: Kinetic Monte Carlo, Atomic fingerprint, Neural network potential

中图分类号: 

  • TP311.5
[1]GARCIA C C,WAGNER G J,TIKARE V,et al.Crossing the mesoscale no-mans land via parallel kinetic Monte Carlo[R].Sandia National Laboratories(SNL),Albuquerque,NM,and Livermore,CA(United States),2009.
[2]BECQUART C S,DOMAIN C.Introducing chemistry in ato-mistic kinetic Monte Carlo simulations of Fe alloysunder irradia-tion[J].Physica Status Solidi(B),2010,247(1):9-22.
[3]MARTIN-BRAGADO I,RIVERA A,VALLES G,et al.MMonCa:An Object Kinetic Monte Carlo simulator for damage irradia-tion evolution and defect diffusion[J].Computer Physics Communications,2013,184(12):2703-2710.
[4]JOURDAN T,BOCQUET J L,SOISSON F.Modeling homogeneous precipitationwith an event-based Monte Carlo method:Application to the case of Fe-Cu[J].Acta materialia,2010,58(9):3295-3302.
[5]BURGER G B,GUPTA A K,JEFFREY P W,et al.Microstructural control of aluminum sheet used in automotive applications[J].Materials Characterization,1995,35(1):23-39.
[6]GUO H,ENOMOTO M,SHANG C J.Simulation of bcc-Cuprecipitation in ternary Fe-Cu-M alloys[J].Computational Materials Science,2018,141:101-113.
[7]LIU H,WANG X,CUI W,et al.The effect of dislocations on irradiation-induced vacancy-like defects in FeCu alloy and reactor pressure vessel steel[J].Journal of Nuclear Materials,2019,524:80-89.
[8]HUANG S,ZHANG C H,SUN J,et al.Formatin and Migration Mechanism of the Vacancy in Three Typical Structures Metal[J].Applied Physics,2012,2(2):50-54.
[9]WANG C Y,WANG Z Q,MENG Q Y.Comparative study of the first-principles and empirical potential simulation of vacancies in silicon[J].Acta Physica Sinica,2010(5):3370-3376.
[10]MARTYNEC T,KARAPANAGIOTIS C,KLAPP S H L,et al.Machine learning predictions of surface migration barriers in nucleation and non-equilibrium growth[J].Communications Materials,2021,2(1):1-9.
[11]XU B,ZHANG J,MA S,et al.Revealing the crucial role of rough energy landscape on self-diffusion in high-entropy alloys based on machine learning and kinetic Monte Carlo[J].Acta Materialia,2022(234):118051-118062.
[12]ZHANG S,ZHANG P,CHERN G W.Anomalous phase separation in a correlated electron system:Machine-learning-enabled large-scale kinetic Monte Carlo simulations[J].Proceedings of the National Academy of Sciences,2022,119(18):e2119957119.
[13]SHANG H,CHEN X,GAO X,et al.TensorKMC:Kineticmonte carlo simulation of 50 trillion atoms driven by deep lear-ning on a new generation of sunway supercomputer[C]//Proceedings of the International Conference for High Perfor-mance Computing,Networking,Storage and Analysis.2021:1-14.
[14]CASTIN N,PASCUET M I,MESSINA L,et al.Advancedatomistic models for radiation damage in Fe-based alloys:Contributions and future perspectives from artificial neural networks[J].Computational Materials Science,2018,148:116-130.
[15]CASTIN N,MESSINA L,DOMAIN C,et al.Improved atomistic Monte Carlo models based on ab-initio-trained neural networks:Application to FeCu and FeCr alloys[J].Physical Review B,2017,95(21):214117.
[16]MISHIN Y,LOZOVOI A Y.Angular-dependent interatomic po-tential for tantalum[J].Acta Materialia,2006,54(19):5013-5026.
[17]SOISSON F,BECQUART C S,CASTIN N,et al.Atomistic Kinetic Monte Carlo studies of microchemical evolutions driven by diffusion processes under irradiation[J].Journal of Nuclear Materials,2010,406(1):55-67.
[18]BEHLER J,PARRINELLO M.Generalized neural-network representation of high-dimensional potential-energy surfaces[J].Physical Review Letters,2007,98(14):146401.
[19]VALLE M,OGANOV A R.Crystal structures classifier for an evolutionary algorithm structure predictor[C]//2008 IEEE Symposium on Visual Analytics Science and Technology.IEEE,2008:11-18.
[20]DAW M S.Model of metallic cohesion:The embedded-atommethod[J].Physical Review B,1989,39(11):7441-7452.
[21]BASKES M I,JOHNSON R A.Modified embedded atom potentials for HCP metals[J].Modelling and Simulation in Materials Science and Engineering,1994,2(1):147-163.
[22]LENOSKY T J,SADIGH B,ALONSO E,et al.Highly opti-mized empirical potential model of silicon[J].Modelling and Simulation in Materials Science and Engineering,2000,8(6):825-841.
[23]BASKES M I.Modified embedded-atom potentials for cubic materials and impurities[J].Physical review B,1992,46(5):2727.
[24]BASKES M I.Atomistic model of plutonium[J].Physical Review B,2000,62(23):15532.
[25]CHEN X,GAO X Y,ZHAO Y F,et al.TensorAlloy:An automatic atomistic neural network program for alloys[J].Computer Physics Communications,2020,250:107057.
[26]LI Y B,GUO P Y,ZHANG S Y.Research on Activation Function in Deep Convolutional Neural Network[J].Computer Technology and Development,2021,31(9):61-66.
[27]ZHAO H,LIU F,LI L,et al.A novel softplus linear unit for deep convolutional neural networks[J].Applied Intelligence,2018,48:1707-1720.
[28]BARRON J T.Squareplus:A softplus-like algebraic rectifier[J].arXiv:2112.11687,2021.
[29]VINCENT E,BECQUART C S,DOMAIN C.Solute interaction with point defects in α Fe during thermal ageing:A combined ab initio and atomic kinetic Monte Carlo approach[J].Journal of Nuclear Materials,2006,351(1/2/3):88-99.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!