计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 299-309.doi: 10.11896/jsjkx.230600074
王彬1, 张鑫雨1, 金海燕1,2
WANG Bin1, ZHANG Xinyu1, JIN Haiyan1,2
摘要: 在工程问题的优化求解过程中,对个体的适应度评价可能会受到环境噪声的干扰,进而影响对种群进行合理的优胜劣汰操作,造成算法性能下降。为了对抗噪声环境的影响,提出了一种基于时空间联合去噪的改进差分进化算法(SEDADE)。根据适应度排名将种群划分成两个子种群,对评价较差个体组成的子种群用分布估计算法(EDA)进化,采用高斯分布建模解空间,利用解空间中多个个体噪声的随机性抵消噪声影响;对评价较好个体组成的子种群用差分进化算法(DE)进化,并且引入基于时间的停滞重采样机制去噪,提高收敛精度。对时空间混合进化得到的两个子种群进行基于概率选择的EDA信息利用操作,利用EDA搜索得到的全局信息引导DE的搜索方向,避免陷入局部最优。在实验中使用了被零均值高斯噪声干扰的基准函数,可以发现SEDADE相比其他算法更具有竞争性,此外通过消融实验验证了所提算法包含的3个机制的有效性和合理性。
中图分类号:
[1]VIKHAR P A.Evolutionary algorithms:A critical review and its future prospects[C]//International Conference on Global Trends in Signal Processing,Information Computing and Communication(ICGTSPICC).IEEE,2016:261-265. [2]TAU Y H S.Optimization of power delivery design and metho-dologies[C]//International Conference on Electronic Materials and Packaging.IEEE,2006:1-3. [3]LI Z,ZHANG S,CAI X,et al.Noisy Optimization by Evolution Strategies With Online Population Size Learning[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2022,52(9):5816-5828. [4]CHIU S Y,LIN C N,LIU J,et al.Differential evolution forstrongly noisy optimization:Use 1.01 n resamplings at iteration n and reach the 1/2 slope[C]//IEEE Congress on Evolutionary Computation(CEC).IEEE,2015:338-345. [5]GUO D,NIE Z,YAN L.The application of noise-tolerant ZD design formula to robots' kinematic control via time-varying nonlinear equations solving[J].IEEE Transactions on Systems,Man,and Cybernetics:Systems,2018,48(12):2188-2197. [6]JING B B,GUO J,WANG L Q,et al.Image double blind denoi-sing algorithm combining with denoising convolutional neural network and conditional generative adversarial net[J].Journal of Computer Applications,2021,41(6):1767-1774. [7]RAKSHIT P,KONAR A,DAS S,et al.Uncertainty Management in Differential Evolution Induced Multiobjective Optimization in Presence of Measurement Noise[J].IEEE Transactions on Systems Man & Cybernetics Systems,2017,44(7):922-937. [8]MERELO J J,LIBERATORE F,ARES A F,et al.There isNoisy Lunch:A Study of Noise in Evolutionary Optimization Problems[C]//International Joint Conference on Computational Intelligence.IEEE,2016. [9]JIN Y,BRANKE J.Evolutionary optimization in uncertain environments-a survey[J].IEEE Transactions on Evolutionary Computation,2005,9(3):303-317. [10]CAPONIO A,NERI F.Differential Evolution with Noise Analyzer[C]//Workshops on Applications of Evolutionary Computation.Berlin,Heidelberg: Springer Berlin Heidelberg,2009:715-724. [11]MININNO E,NERI F.A memetic Differential Evolution ap-proach in noisy optimization[J].Memetic Computing,2010,2(2):111-135. [12]DI PIETRO A,WHILE L,BARONE L.Applying evolutionaryalgorithms to problems with noisy,time-consuming fitness functions[C]//Proceedings of the 2004 Congress on Evolutionary Computation(IEEE Cat.No.04TH8753).IEEE,2004:1254-1261. [13]MARKON S,ARNOLD D V,BACK T,et al.Thresholding-aselection operator for noisy ES[C]//Proceedings of the 2001 Congress on Evolutionary Computation.IEEE,2001:465-472. [14]DAS S,KONAR A,CHAKRABORTY U K.Improved differential evolution algorithms for handling noisy optimization pro-blems[C]//2005 IEEE Congress on Evolutionary Computation.IEEE,2005:1691-1698. [15]DAS S,KONAR A.An Improved Differential Evolution Scheme for Noisy Optimization Problems[C]//International Conference on Pattern Recognition & Machine Intelligence.Springer-Verlag,2005. [16]BREST J,GREINER S,BOSKOVIC B,et al.Self-adapting con-trol parameters in differential evolution:A comparative study on numerical benchmark problems[J].IEEE Transactions on Evolutionary Computation,2006,10(6):646-657. [17]RAHNAMAYAN S,TIZHOOSH H R,SALAMA M M A.Opposition-based differential evolution for optimization of noisy problems[C]//2006 IEEE International Conference on Evolutionary Computation.IEEE,2006:1865-1872. [18]GHOSH A,DAS S,PANIGRAHI B K,et al.A noise resilient differential evolution with improved parameter and strategy control[C]//IEEE congress on evolutionary computation(CEC).IEEE,2017:2590-2597. [19]ZHANG J,ZHU X,WANG Y,et al.Dual-Environmental Particle Swarm Optimizer in Noisy and Noise-Free Environments [J].IEEE Transactions on Cybernetics,2019,49(6):2011-2021. [20]ZHAO Q,GAO Y.A new Algorithm based on the Gbest of Particle Swarm Optimization algorithm to improve Estimation of Distribution Algorithm[C]//2018 International Conference on Smart Computing and Electronic Enterprise(ICSCEE).IEEE,2018:1-5. [21]QIU L Q,LIANG Y Q,FAN J C.A Dynamic Fusion Parallel Hybrid Evolutionary Algorithm EDAs/PSO [J].Computer Application and Software,2014,31(6):271-274. [22]SUN J,ZHANG Q,TSANG E P K.DE/EDA:A new evolu-tionary algorithm for global optimization[J].Information Sciences,2005,169(3/4):249-262. [23]STORN R,PRICE K.Differential Evolution:A Simple and Efficient Adaptive Scheme for Global Optimization Over Continuous Spaces[J].Journal of Global Optimization,1995,23(1):1-12. [24]DAS S,SUGANTHAN P N.Differential evolution:A survey of the state-of-the-art[J].IEEE Transactions on Evolutionary Computation,2010,15(1):4-31. [25]DAS S,MULLICK S S,SUGANTHAN P N.Recent advances in differential evolution-an updated survey[J].Swarm and Evolutionary Computation,2016,27:1-30. [26]MUHLENBEIN H.The equation for response to selection and its use for prediction[J].Evolutionary Computation,1997,5(3):303-346. [27]OCHOA A.EBBA-Evolutionary best basis algorithm[C]//Proceedings of the Second International Symposium on Adaptive Systems(ISAS 99),Havana,Cuba.1999:93-98. [28]LARRANAGA P,LOZANO J A.Estimation of distribution algorithms:A new tool for evolutionary computation[M].Boston:Kluwer Press,2002. [29]ZHANG B T.A Bayesian Framework for Evolutionary Computation[C]//Proceedings of the 1999 Congress on Evolutionary Conputation(CEC99).1999:722-728. [30]BALUJA S.Population-based incremental learning.a method for integrating genetic search based function optimization and competitive learning[R].Carnegie-Mellon Univ Pittsburgh Pa Dept of Computer Science,1994. [31]RAKSHIT P,KONAR A,DAS S.Noisy evolutionary optimization algorithms-a comprehensive survey[J].Swarm and Evolutionary Computation,2017,33:18-45. [32]KRINK T,FILIPIC B,FOGEL G B.Noisy optimization pro-blems-a particular challenge for differential evolution?[C]//Proceedings of the 2004 Congress on Evolutionary Computation(IEEE Cat.No.04TH8753).IEEE,2004,1:332-339. [33]GHOSH A,DAS S,MALLIPEDDI R,et al.A modified differential evolution with distance-based selection for continuous optimization in presence of noise[J].IEEE Access,2017,5:26944-26964. [34]GUO X,YANG Q,ZHENG H,et al.Optimization of power distribution for electrothermal anti-icing systems by differential evolution algorithm[J].Applied Thermal Engineering,2023,221:119875. |
|