计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 331-337.doi: 10.11896/jsjkx.231200190
李志1,2, 林森1, 张强3
LI Zhi1,2, LIN Sen1, ZHANG Qiang3
摘要: 轨道交通系统是当今社会中交通运力的主要承载系统,对安全性有极高的要求。轨道交通系统的多个组件由于直接暴露在环境中,受多种外界因素影响,易出现故障。这些故障可能会导致列车延误、乘客滞留、服务暂停,甚至是灾难性的生命或资产损失。因此,需要设计针对轨道交通系统的实时故障检测方案,进而才能采取有效的维护措施。不同于基于传统的机器学习(Machine Learning,ML)的故障检测工作,本研究采用中文双向编码器表示转换器(Bidirectional Encoder Representation from Transformer,BERT)深度学习(Deep Learing,DL)模型进行实时的智能故障检测。该模型能够在处理故障检测任务时获取双向上下文的理解,从而更准确地捕捉句子中的语义关系,使得其对故障描述的理解更为精准。BERT的训练需要大量的数据支持,而轨道交通领域中存在多个运营商,它们各自持有独立的故障检测数据。由于数据的保密性,这些数据无法进行共享,从而限制了模型的训练,故采用了联邦边云计算方法,允许多个运营商在保持数据隐私的前提下共同训练BERT模型。联邦学习结合边云计算方法,在本地对轨道交通各运营商的数据进行初步处理,然后将汇总后的梯度上传至云端进行模型训练,最终将训练得到的模型参数发送回各边缘设备,实现模型的更新。研究结果表明,采用联邦边云计算方法进行BERT模型训练,在轨道交通领域的故障检测任务中优于目前已有的先进方案。这一方法在解决数据保密性问题的同时,有效提升了轨道交通故障检测的准确性与可靠性。
中图分类号:
[1]WEI X D.Urban rail transit automation system and technology[M].Electronic Industry Press,2004. [2]JIANG F,Research on the connection between urban rail transit and other modes of transportation [J].Journal of North Jiaotong University,2001(4):108-110. [3]TI Y.Development status and countermeasures of urban railtransit in China [J].Science,Technology and Economy of Inner Mongolia,2005(6):317-319. [4]XU K,ZHANG C B,CHEN Z H.Overview of rail transit fault diagnosis [C]//The 18th Annual Conference of China System Simulation Technology and its Application.2003. [5]GONG Y M,CHEN X K,ZHANG G F.Information security ofthe urban rail transit signaling system [J].Electronic Communication and Computer Science,2023,5(4):89-91. [6]LIU T S,ZHU X J,XU R H.Analysis of the operation safetyand reliability of the urban rail transit system [J].Research on Urban Rail Transit,2006,9(1):15-17. [7]SUN Y J,ZHANG S,MIAO C X,et al.Improved BP Neural Network forTransformer Fault Diagnosis[J].Journal of China University of Mining & Technology-English Edition,2007,17(1):138-142. [8]CHEN K W,WEI S G,SHI H B,et al.An on-board network fault diagnosis method based on machine learning:CN202211088642.2[P].[2024-02-25].http://www2.drugfuture.com/cnpat/verify.aspx?cnpatentno=202211088642.2. [9]ZHOU J B,XIAO M H,ZHU Y J, et al.Study on fault diagnosis of tractor diesel engine based on HPO-SVM [J].Journal of Nanjing Agricultural University,2023,46(2):12. [10]WU T J.Data-driven fault diagnosis method based on machine learning [D].Hangzhou:Zhejiang University of Technology,2020. [11]ZHANG J P,WANG L X.Simulation study on individualizeddiagnosis of circuit faults [J].Comkputer Simulation,2022(8):168-170. [12]WANG Q,MEN X Z.Fault Diagnosis Based on Rough Sets and C4.5 dsDecision Tree[J].Journal of Northeastern University:Natural Science,2006,27(10):1138-1141. [13]LIU D,ZHANG Y,ZOU G Y.Fault diagnosis method,device,equipment and medium based on decision tree:CN202211667676.7[P].[2023-04-27].http://www2.drugfuture.com/cnpat/verify.aspx?cnpatentno=202211667676.7. [14]WANG X M,FU Y B,LI J T.Diagnosis diagnosis decisionmethod for power equipment based on decision tree algorithm [J].Automation Application,2023,64(12):128-131. [15]ZHAO W,ZHU Y,WANG X.Combinatorial Bayes network in fault diagnosis of power transformer[J].Electric Power Automation Equipment,2009,29(11):6-9. [16]WANG Z Y,SONG R W,SHI H.An online diagnosis method of bearing faults based on Dynamic Bayesian network [J].Journal of Taiyuan University of Science and Technology,2023,44(4):303-308. [17]WANG Z H.Methods for ventilator fault diagnosis based on a Bayesian network [J].Equipment Management and Maintenance,2023(4):150-151. [18]LIU K,YUAN Y Y.Feature extraction and clustering of short articles based on autoencoder [J].Journal of Peking University:Natural Science Edition,2015,51(2):282-288. [19]DEVLIN J,CHAN M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04802,2018. [20]DU X X,LIU Y.Research on Beijing Rail Transit Information Exchange Platform based on XML [J].Railway Computer Applications,2012,21(1):55-61. [21]YUE C,ZHANG K,QU S H.Application of urban information model in shield tunneling engineering [J].Urban Rail Transit research,2021,24(7):225-229. [22]SUN M,FU Z.A method and device for predicting short-timepassenger flow of rail transit:CN202111203957.2 [P].[2024-02-25].http://www2.drugfuture.com/cnpat/verify.aspx?cnpatentno=202111203957.2. |
|