计算机科学 ›› 2024, Vol. 51 ›› Issue (9): 393-400.doi: 10.11896/jsjkx.230800183

• 信息安全 • 上一篇    下一篇

基于Geohash的增强型位置k-匿名隐私保护方案

李勇军1,2, 祝跃飞1, 白利芳1,3   

  1. 1 信息工程大学网络空间安全学院 郑州 450007
    2 中原工学院软件学院 郑州 450000
    3 中国软件评测中心网络安全测评工程技术中心 北京 100048
  • 收稿日期:2023-08-29 修回日期:2024-01-08 出版日期:2024-09-15 发布日期:2024-09-10
  • 通讯作者: 祝跃飞(yfzhu17@sina.com)
  • 作者简介:(106449285@qq.com)
  • 基金资助:
    科技委基础加强项目(2020-JCJQ-ZD-021)

Enhanced Location K-anonymity Privacy Protection Scheme Based on Geohash

LI Yongjun1,2, ZHU Yuefei1, BAI Lifang1,3   

  1. 1 School of Cyberspace Security,PLA Information Engineering University,Zhengzhou 450007,China
    2 Software College,Zhongyuan University of Technology,Zhengzhou 450000,China
    3 Cybersecurity Testing Engineering Technology Center,China Software Testing Center,Beijing 100048,China
  • Received:2023-08-29 Revised:2024-01-08 Online:2024-09-15 Published:2024-09-10
  • About author:LI Yongjun,born in 1983,doctoral student.Her main research interests include privacy protection and so on.
    ZHU Yuefei,born in 1962,professor,doctoral supervisor.His main research interests include network security and cryptography.
  • Supported by:
    Foundation Strengthening Project of Science and Technology Commission(2020-JCJQ-ZD-021).

摘要: 随着LBS的广泛应用,位置隐私保护势在必行。近年来,作为应用较为广泛的位置k-匿名解决方案已成为研究热点,但k-匿名方案易受到敌手背景知识攻击,虽有学者们不同程度地考虑了位置相关的信息,但都不全面,并且当前形成匿名区的方案大多较为耗时。基于此,为抵御敌手的语义攻击和查询及位置同质性攻击,提出了增强型位置k-匿名方案,在匿名区构建时充分考虑与物理位置相关的语义信息、时间属性、查询概率及查询语义等信息;然后在进行位置选取时,保证所选位置相对分散;为降低匿名区构建时耗,采用Geohash进行位置编码;最后通过真实数据集上的实验表明,所提方案可提供较好的位置隐私保护。

关键词: Geohash, 增强型位置k-匿名, 基于位置的服务, 位置隐私, 位置语义, 查询概率, 时间属性

Abstract: With the wide application of LBS,location privacy protection is imperative.In recent years,location k-anonymity solution has become a research hotpot which is widely used.However,k-anonymity schemes are vulnerable to background knowledge attacks.Although some scholars have considered location-related information to varying degrees,they are not comprehensive,and the current form in the anonymous scheme are relatively time-consuming.Based on this,in order to resist background knowledge attacks from adversaries,enhanced location k-anonymity scheme is proposed,which fully considers the semantic information,time attributes,query probability and query semantics related to physical location when constructing anonymous areas.When the location point is selected,it is necessary to ensure that the selected location is relatively scattered.In order to reduce the time consumption of anonymous area construction,Geohash is used to encode the location information.Finally,experiments on real data sets show that the proposed scheme can provide better location privacy protection.

Key words: Geohash, Enhanced location k-anonymity, Location based services, Location privacy, Location semantic, Query probability, Time attribute

中图分类号: 

  • TP309
[1]HE Y,CHEN J.User location privacy protection mechanism for location-based services[J].Digital Communications and Networks,2021,7(2):264-276.
[2]WANG Y,ZUO K,LIU R,et al.Dynamic pseudonym semantic-location privacy protection based on continuous query for road network[J].Int.J.Netw.Secur,2021,23:642-649.
[3]MUSHTAQ M,ULLAH A,ASHRAF H,et al.Anonymity As-surance using efficient pseudonym consumption in Internet of vehicles[J].Sensors,2023,23:5217-5234.
[4]ZHOU J Q,LI Y J.Personalized dummy generation methodbased on spatiotemporal correlations and location semantics[J].Ruan Jian Xue Bao/Journal of Software,2019,30(S1):18-26.
[5]WANG H,ZHU G Y,SHEN Z H,et al.Dummy location gene-ration method based on user preference and location distribution[J].Computer Science,2021,48(7):164-171.
[6]ZHANG A,LI X H,LI B.Location privacy desensitization algorithm based on dummy location selection[J].Application Research of Computers,2022,39(5):1551-1556.
[7]LIANH,QIU W,YAN D,et al.Privacy-preserving spatial query protocol based on the moore curve for location-based service[J].Computers & Security,2020,96(3):101-125.
[8]ZHANG L,SONG G,ZHU,D,et al.Location privacy preservation through kernel transformation[J].Concurrency and Computation:Practice and Experience,2020,34(16):e6014.
[9]ZHANG X J,YANG H Y,LI Z,et al.Differentially private location privacy-preserving scheme with semantic location[J].Computer Science,2021,48(8):300-308.
[10]LIU Z P,MIAO D W,LIU Q N,et al.Location privacy protection through locatl differential privacy under k-anonymity[J].Application Research of Computers,2022,39(8):2469-2473.
[11]YANG X,GAO L,WANG H,et al.A User-related semantic location privacy protection method in location-based service[C]//Proceedings of the IEEE 27th International Conference on Parallel and Distributed Systems(ICPADS).2021:14-16.
[12]YANG X,GAO L,ZHENG J,et al.Location privacy preservation mechanism for location-based service with incomplete location Data[J].IEEE Access,2020(8):95843-95854.
[13]ZHANG L,LIU D,CHEN M,et al.A user collaboration privacy protection scheme with threshold scheme and smart contract[J].Information Sciences,2021,560:183-201.
[14]KUANG L,WANG Y,ZHENG X,et al.Using location semantics to realize personalized road network location privacy protection[J].J Wireless Com Network,2020,1(2020):1-16.
[15]XU M J,HAN J.Next location recommendation based on semantic-behavior prediction[C]//Proceedings of the 2020 5th International Conference on Big Data and Computing.2020:65-73.
[16]SHI X,ZHANG J,GONG Y.A dummy location generation algorithm based on the semantic quantification of location[C]//Proceedings of 2021 IEEE International Conference on Artificial Intelligence and Computer Applications(ICAICA).2021:172-176.
[17]JIAO Z X,ZHANG L,LIU X P.A dummy location selection al-gorithm based on differentiated time-segment and fine-grained[J].Journal of Nanjing University of Posts and Telecommunications(Natual Science Edition),2022,42(6):106-114.
[18]XING L,ZHANG D,WU H,et al.Distributed K-Anonymous Location Privacy Protection Algorithm Based on Interest Points and User Social Behavior[J].Electronics,2023,12:2446.
[19]TU S P,ZHANG L,LIU X P.Double Dummy Location Selection Algorithm Based on Behavior Correlation[J].Computer Science,2023,50(5):348-354.
[20]WikiPedian.Geohash[OL].[2019-11-20].http://http://en.wikipedia.org/wiki/Geohash.
[21]YIN F M,CHEN H.K Anonymous Location Privacy Preservation Scheme Based on Geohash Coding[J].Journal of Wuhan University(Natural Science Edition),2022,68(1):73-82.
[22]CHEN Y.Information Theory and Coding(2nd ed)[M].Beijing:Publishing House of Electronics Industry,2012.
[23]ZHANG Y B,ZHANG Q Y,LI Z Y,et al.A k-anonymous Location Privacy Protection Method of Dummy Based on Geogra-phical Semantics[J].Int.J.Netw.Secur,2019,21:937-946.
[24]XING L,JIA X,GAO J,et al.A location privacy protection algorithm based on double K-anonymity in the social Internet of vehicles[J].IEEE Communications Letters,2021,25:3199-3203.
[25]YANG M X,YE B P,CHEN Y L,et al.A trusted de-swinging k-anonymity scheme for location privacy protection [J].Journal of Cloud Computing,2022,11(1):1-10.
[26]ZHOU Y H,LI G H,YANG Y G,et al.Location Privacy Preserving Nearest Neighbor Querying Based on GeoHash[J].Computer Science,2019,46(8):212-216.
[27]FENG J Y,YANG J W,ZHANG R T,et al.A Spectrum Sha-ring Incentive Scheme Against Location Privacy Leakage in IoT Networks[J].Journal of Computer Research and Development,2020,57(10):2209-2220.
[28]LI Z Y,ZHAO Z F.Index and Query Method Based on Spatial-Temporal Distribution of Trajectory Big Data[J].Journal of Nanjing University of Aeronautics & Astronautics,2022,54(3):528-536.
[29]LIU K,HAN Y L,WANG J J,et al.Location Privacy Protection Method Based on Geohash Coding and Pseudo-Random Sequence[C]//Proceedings of the 2022 3rd Information Communication Technologies Conference(ICTC).2022:178-183.
[30]FEI F,LI S,DAI H,et al.A K-Anonymity Based Schema forLocation Privacy Preservation[J].IEEE Transactions on Sustainable Computing,2019,4(2):156-167.
[31]SHAHID A R,PISSINOU N,IYENGAR S S,et al.Delay-aware privacy-preserving location-based services under spatiotemporal constraints[J].International Journal of Communication Systems,2021,34:e4656.
[32]ZHENG Y,XIE X,MA W Y.GeoLife:A Collaborative SocialNetworking Service among User,location and trajectory[J].IEEE Data Engineering Bulletin,2021,33(2):32-40.
[33]Gaode Map[OL].https://www.amap.com/.
[34]Dianping[OL].http://www.dianping.com/.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!