计算机科学 ›› 2024, Vol. 51 ›› Issue (10): 105-111.doi: 10.11896/jsjkx.240300059

• 智能教育技术及应用 • 上一篇    下一篇

基于AU的多任务学生情绪识别方法研究

张笑云1, 赵晖2   

  1. 1 新疆大学软件学院 乌鲁木齐 830046
    2 新疆大学信息科学与工程学院 乌鲁木齐 830046
  • 收稿日期:2024-03-11 修回日期:2024-07-04 出版日期:2024-10-15 发布日期:2024-10-11
  • 通讯作者: 赵晖(zhmerry@126.com)
  • 作者简介:(1004905193@qq.com)
  • 基金资助:
    国家自然科学基金(62166041)

Study on Multi-task Student Emotion Recognition Methods Based on Facial Action Units

ZHANG Xiaoyun1, ZHAO Hui2   

  1. 1 College of Software,Xinjiang University,Urumqi 830046,China
    2 School of Information Science and Engineering,Xinjiang University,Urumqi 830046,China
  • Received:2024-03-11 Revised:2024-07-04 Online:2024-10-15 Published:2024-10-11
  • About author:ZHANG Xiaoyun,born in 1996,postgraduate,is a member of CCF(No.T6014G).Her main research interests include natural language processing and computer vision.
    ZHAO Hui,born in 1972,Ph.D,professor.Her main research interests include artificial intelligence,affective computing,speech and digital image proces-sing.
  • Supported by:
    National Natural Science Foundation of China(62166041).

摘要: 智能教育快速发展,运用人工智能提升教育质量和效率已成为趋势。学生作为教育的核心,其情绪状态对教育成效具有至关重要的影响。为了深入研究学生情绪,收集了课堂场景中的学生学习视频,包括听课和小组讨论两种情境,并据此建立了一个多任务学生情绪数据库。面部作为内在情绪状态的直接外在体现,显示出AU与情绪之间的紧密关联。在此基础上,提出了一个基于多任务学习的学生情绪识别模型Multi-SER。该模型通过结合AU识别和学生情绪识别两项任务,挖掘各个AU与学生情绪之间的关联关系,进而提升模型在学生情绪识别方面的性能。在多任务实验中,Multi-SER模型的情绪识别准确率达到了80.87%,相比单情绪识别任务模型SE-C3DNet+,效果提升了3.11%。实验结果表明,通过多任务学习挖掘AU和情绪之间的关联关系,模型在分类各种情绪方面的性能得到了提升。

关键词: 学生情绪识别, 多任务学习, C3D, SE, 面部单元

Abstract: With the rapid development of intelligent education,it has become a trend to use artificial intelligence to improve the quality and efficiency of education.The emotional state of students,who are at the center of education,has a crucial impact on educational effectiveness.In order to study students' emotions in depth,this paper collects students' learning videos in classroom scenarios,including two contexts of listening to lectures and group discussions,and builds a multi-task students' emotion database accordingly.The face serves as a direct outward manifestation of the internal emotional state,which shows a strong correlation between AU and emotions.Based on this,this paper proposes a multi-task learning-based student emotion recognition model Multi-SER.The model explores the association relationship between individual AUs and students' emotions by combining the two tasks of AU recognition and students' emotion recognition,thereby improving the performance of the model in students' emotion recognition.In the multi-task experiment,the Multi-SER model achieves an accuracy of 80.87% in emotion recognition,which improves the effect by 3.11% compared to the single emotion recognition task model SE-C3DNet+.The experimental results show that the performance of the model in categorizing various emotions is improved by mining the correlations between AUs and emotions through multi-task learning.

Key words: Student emotion recognition, Multi-task learning, C3D, SE, Facial action units

中图分类号: 

  • TP391.1
[1]中共中央国务院印发《中国教育现代化2035》[N].人民日报,2019-02-24(001).
[2]教育部关于印发《教育信息化2.0行动计划》的通知[J].中华人民共和国教育部公报,2018,(4):118-125.
[3]WEI Y T,LEI F,HU M J et al.A review of student expression recognition[J].China Educational Informatization,2020(21):48-55.
[4]YANG H,PENG C,SUN R,et al.Student Expression Recognition in Smart Education Environment based on Convolutional Neural Network[C]//2022 9th International Conference on Dependable Systems and Their Applications(DSA).2022.
[5]PANDIMURUGAN V,SINGH A,TIWARI A.Facial Emotion Recognition for Students Using Machine Learning[C]//2023 International Conference on Computer Communication and Informatics(ICCCI).IEEE,2023:1-4.
[6]SUMALAKSHMI C H,VASUKI P.Fused deep learning based Facial Expression Recognition of students in online learning mode[J].Concurrency and Computation:Practice and Expe-rience,2022,34(21):e7137.
[7]DAI X,WEI P,ZENG Y,et al.Students' Facial Expression Re-cognition Based on Multi-head Attention Mechanism[J].Journal of Physics:Conference Series.IOP Publishing,2022(2493):012004.
[8]JIAO S,YAN Y X.Research on Students' Emotional StateBased on Expression Recognition Technology-Taking the Ju-nior Middle School Classroom as an Example[J].Modern Information Technology,2022(18):6.
[9]HAN L,LI Y,ZHOU Z J et al.Teaching Effect Analysis Based on the Facial Expression Recognition in Classroom[J].Modern Distance Education Research,2017(4):8.
[10]GAO Q.Spontaneous learning facial expression recognitionbased on RealSense research [D].Wuhan:Central China normal university,2020.
[11]CHEN Z J.Research on learning emotion recognition methodand application based on facial expression in online learning environment [D].Wuhan:Central China normal university,2020.
[12]XU Z G.Emotion Recognition of learning picture in Intelligent Learning Environment and its application [D].Jinan:Shandong Normal University,2019.
[13]PLUTCHIK R.A general psychoevolutionary theory of emotion[M]//Theories of Emotion.Academic Press,1980:3-33.
[14]EKMAN P,FRIESEN W V.Facial action coding system[J/OL].https://www.paulekman.com/facial-action-coding-system/.
[15]COSTA W,TALAVERA E,OLIVEIRA R,et al.A survey on datasets for emotion recognition from vision:Limitations and in-the-wild applicability[J].Applied Sciences,2023,13(9):5697.
[16]ZHAO H,WANG Z L,LIU Y F.A Survey of Automatic Facial Action Units Recognition[J].Journal of Computer-Aided Design &Computer Graphics,2010,22(5):894-906.
[17]LIU C,ZHANG X,LIU X,et al.Facial Expression Recognition Based on Multi-Modal Features for Videos in the Wild[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:5871-5878.
[18]HOSSAIN S,UMER S,ROUT R K,et al.Fine-grained imageanalysis for facial expression recognition using deep convolu-tional neural networks with bilinear pooling[J].Applied Soft Computing,2023,134:109997.
[19]ZHANG Y,YANG Q.A survey on multi-task learning[J].IEEE Transactions on Know ledge and Data Engineering,2021,34(12):5586-5609.
[20]ZHANG S,YIN C,YIN Z.Multimodal sentiment recognitionwith multi-task learning[J].IEEE Transactions on Emerging Topics in Computational Intelligence,2022,7(1):200-209.
[21]ZHANG Y,RONG L,LI X,et al.Multi-modal sentiment andemotion joint analysis with a deep attentive multi-task learning model[C]//European Conference on Information Retrieval.Cham:Springer International Publishing,2022:518-532.
[22]LI Y,KAZEMEINI A,MEHTA Y,et al.Multitask learning for emotion and personality traits detection[J].Neurocomputing,2022,493:340-350.
[23]BIAN C,ZHANG Y,YANG F,et al.Spontaneous facial expression database for academic emotion inference in online learning[J].IET Computer Vision,2019,13(3):329-337.
[24]GUNES H,PICCARDI M.A bimodal face and body gesture database for automatic analysis of human nonverbal affective behavior[C]//18th International Conference on Pattern Recognition(ICPR'06).IEEE,2006,1:1148-1153.
[25]WALLBOTT H G.Bodily expression of emotion[J].European Journal of Social Psychology,1998,28(6):879-896.
[26]EL KALIOUBY R A.Mind-reading machines:automated infe-rence of complex mental states[R].University of Cambridge,Computer Laboratory,2005.
[27]KOSTI R,ALVAREZ J M,RECASENS A,et al.Emotion re-cognition in context[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2017:1667-1675.
[28]RASTGOO R,KIANI K,ESCALERA S,et al.Multi-modal zero-shot dynamic hand gesture recognition[J].Expert Systems with Applications,2024,247:123349.
[29]HARA K,KATAOKA H,SATOH Y.Can Spatiotemporal 3D CNNs Retrace the History of 2D CNNs and ImageNet?[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition.IEEE,2018.
[30]WANG H,LI B,WU S,et al.Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2023:17958-17968.
[31]ROMEO L,CAVALLO A,PEPA L,et al.Multiple instancelearning for emotion recognition using physiological signals[J].IEEE Transactions on Affective Computing,2019,13(1):389-407.
[32]JIANG X,ZONG Y,ZHENG W,et al.DFEW:A Large-ScaleDatabase for Recognizing Dynamic Facial Expressions in the Wild[C]//Proceedings of the 28th ACM International Confe-rence on Multimedia.2020:2881-2889.
[33]MA F,SUN B,LI S.Spatio-temporal transformer for dynamic facial expression recognition in the wild[J].arXiv:2205.04749,2022.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!