计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 39-46.doi: 10.11896/jsjkx.240700062
朱枫1, 张廷辉1, 李鹏1,2, 徐鹤1,2
ZHU Feng1, ZHANG Tinghui1, LI Peng1,2, XU He1,2
摘要: 随着互联网和社交媒体的迅速发展,新闻的传播途径不再局限于传统的媒体渠道。语义丰富的多模态数据成为新闻的载体,虚假新闻也随之得到了广泛的传播。由于虚假新闻的泛滥会对个人以及社会产生难以预估的影响,针对虚假新闻的检测已经成为目前的研究热点。现有的多模态虚假新闻检测方法仅针对文本和图像数据,无法充分利用短视频中的多模态信息,且忽略了不同模态间的一致性和差异性特征,难以充分发挥多种模态融合的优势。为解决该问题,提出一种基于多模态自适应融合的短视频虚假新闻检测模型。首先对短视频中多模态数据进行特征提取,采用跨模态对齐融合获取不同模态间的一致性和互补性特征;然后根据不同模态特征对最终融合结果的贡献实现自适应融合;最后利用分类器实现虚假新闻检测。在公开的短视频数据集上的实验结果表明,该模型的准确率、精确率、召回率和F1分数都高于当前的先进基线模型。
中图分类号:
[1] OLAN F,JAYAWICKRAMA U,ARAKPOGUN E O,et al.Fake News on Social Media:The Impact on Society[J].Information Systems Frontiers,2024,26(2):443-458. [2] TUFCHI S,YADAV A,AHMED T.A Comprehensive Survey of Multimodal Fake News Detection Techniques:Advances,Challenges,and Opportunities[J].International Journal of Multi-media Information Retrieval,2023,12(2):28. [3] ZHANG X,GHORBANI A A.An Overview of Online FakeNews:Characterization,Detection,and Discussion[J].Information Processing & Management,2020,57(2):102025. [4] VOSOUGHI S,ROY D,ARAL S.The Spread of True and False News Online[J].Science,2018,359(6380):1146-1151. [5] XU K,WANG F,WANG H,et al.Detecting Fake News over Online Social Media via Domain Reputations and Content Understanding[J].Tsinghua Science and Technology,2020,25(1):20-27. [6] LI X,LI S,LI J,et al.Detection of Fake-video Uploaders on So-cial Media Using Naive Bayesian Model with Social Cues[J].Scientific Reports,2021,11(1):16068. [7] LIAO Q,CHAI H,HAN H,et al.An Integrated Multi-taskModel for Fake News Detection[J].IEEE Transactions on Knowledge and Data Engineering,2022,34(11):5154-5165. [8] CAO J,QI P,SHENG Q,et al.Exploring the Role of VisualContent in Fake News Detection[J].arXiv:2003.05096,2020. [9] RAJ C,MEEL P.Convnet Frameworks for Multi-modal Fake News Detection[J].Applied Intelligence,2021,51(11):8132-8148. [10] AMRI S,SALLAMI D,AÏMEUR E.Exmulf:An ExplainableMultimodal Content-based Fake News Detection System[C]//14th International Symposium on Foundations and Practice of Security.2021:177-187. [11] WANG H,GONG L,ZHOU Z,et al.Detecting Mis/Dis-information from Social Media with Semantic Enhancement[J].Data Analysis and Knowledge Discovery,2023,7(2):48-60. [12] YU F,LIU Q,WU S,et al.A Convolutional Approach for Misinformation Identification[C]//26th International Joint Confe-rence on Artificial Intelligence.2017:3901-3907. [13] MOHTARAMI M,BALY R,GLASS J,et al.Automatic Stance Detection Using End-to-End Memory Networks[C]//2018 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2018:767-776. [14] MA J,GAO W,WONG K.Detect Rumors on Twitter by Promoting Information Campaigns with Generative Adversarial Learning[C]//2019 The World Wide Web Conference.2019:3049-3055. [15] DOU Y,SHU K,XIA C,et al.User Preference-aware FakeNews Detection[C]//44th International ACM SIGIRConfe-rence on Research and Development in Information Retrieval.2021:2051-2055. [16] KAUSAR N,ALIKHAN A,SATTAR M.Towards Better Representation Learning Using Hybrid Deep Learning Model for Fake News Detection[J].Social Network Analysis and Mining,2022,12(1):165. [17] YU W,GE J,YANG Z,et al.Multi-domain Fake News Detec-tion for History News Environment Perception[C]//17th IEEE Conference on Industrial Electronics and Applications.2022:428-433. [18] SONG C,TENG Y,ZHU Y,et al.Dynamic Graph Neural Network for Fake News detection[J].Neurocomputing,2022,505:362-374. [19] QI P,CAO J,YANG T,et al.Exploiting Multi-domain Visual Information for Fake News Detection[C]//2019 IEEE International Conference on Data Mining.2019:518-527. [20] LIANG Y,TOHTI T,HAMDULLA A.Multi-modal False Information Detection via Multi-layer CNN-based Feature Fusion and Multi-classifier Hybrid Prediction[J].Computer Enginee-ring and Science,2023,45(6):1087-1096. [21] YE Z,LUO S,YU J.Multimodal Misinformation DetectionModel with Social Network Graph[J].Application Research of Computers,2024,41(7):1-8. [22] QU Z,MENG Y,MUHAMMAD G,et al.QMFND:A Quantum Multimodal Fusion-based Fake News Detection Model for Social Media[J].Information Fusion,2024,104:102172. [23] REZAYI S,SOLEYMANI S,ARABNIA H R,et al.SociallyAware Multimodal Deep Neural Networks for Fake News Classification[C]//4th International Conference on Multimedia Information Processing and Retrieval.2021:253-259. [24] GÔLO M P S,DE SOUZA M C,ROSSI R G,et al.One-class Learning for Fake News Detection through Multimodal Variational Autoencoders[J].Engineering Applications of Artificial Intelligence,2023,122:106088. [25] SILVA A,LUO L,KARUNASEKERA S,et al.Embracing Domain Differences in Fake News:Cross-domain Fake News Detection Using Multi-modal Data[C]//35th AAAI Conference on Artificial Intelligence.2021:557-565. [26] MOSALLANEZHAD A,KARAMI M,SHU K,et al.DomainAdaptive Fake News Detection via Reinforcement Learning[C]//31st ACM World Wide Web Conference.2022:3632-3640. [27] HOU R,PÉREZ-ROSAS V,LOEB S,et al.Towards Automatic Detection of Misinformation in Online Medical Videos[C]//21st International Conference on Multimodal Interaction.2019:235-243. [28] SERRANO J C M,PAPAKYRIAKOPOULOS O,HEGELICHS.NLP-based Feature Extraction for The Detection of Covid-19 Misinformation Videos on YouTube[C]//1st Workshop on NLP for COVID-19 at the 58th Annual Meeting of the Association for Computational Linguistics.2020:1-7. [29] CHOI H,KO Y.Using Topic Modeling and Adversarial Neural Networks for Fake News Video Detection[C]//30th ACM International Conference on Information & Knowledge Management.2021:2950-2954. [30] SHANG L,KOU Z,ZHANG Y,et al.A Multimodal Misinformation Detector for Covid-19 Short Videos on TikTok[C]//2021 IEEE International Conference on Big Data.2021:899-908. [31] WANG W Y.“Liar,Liar Pants on Fire”:A New Benchmark Dataset for Fake News Detection[C]//55th Annual Meeting of the Association for Computational Linguistics.2017:422-426. [32] SHAHI G K,DIRKSON A,MAJCHRZAK T A.An Exploratory Study of Covid-19 Misinformation on Twitter[J].Online Social Networks and Media,2021,22:100104. [33] KOCHKINA E,HOSSAIN T,LOGAN R L,et al.Evaluatingthe Generalisability of Neural Rumour Verification Models[J].Information Processing & Management,2023,60(1):103116. [34] BOIDIDOU C,PAPADOPOULOS S,ZAMPOGLOU M,et al.Detection and Visualization of Misleading Content on Twitter[J].International Journal of Multimedia Information Retrieval,2018,7(1):71-86. [35] JIN Z,CAO J,GUO H,et al.Multimodal Fusion with Recurrent Neural Networks for Rumor Detection on Microblogs[C]//25th ACM International Conference on Multimedia.2017:795-816. [36] NAKAMURA K,LEVY S,WANG W Y.Fakeddit:A NewMultimodal Benchmark Dataset for Fine-Grained Fake News Detection[C]//12th Language Resources and Evaluation Conference.2020:6149-6157. [37] JINDAL S,SOOD R,SINGH R,et al.Newsbag:A Multimodal Benchmark Dataset for Fake News Detection[C]//The AAAI-20 Workshop on Artificial Intelligence Safety.2020:138-145. [38] GAO G,FANG Y,HAN Y,et al.Construction of Multi-modal Social Media Dataset for Fake News Detection[J].Chinese Journal of Network and Information Security,2023,9(4):144-154. [39] ZHOU X,MULAY A,FERRARA E,et al.Recovery:A Multimodal Repository for Covid-19 News Credibility Research[C]//29th ACM International Conference on Information & Know-ledge Management.2020:3205-3212. [40] QI P,BU Y,CAO J,et al.FakeSV:A Multimodal Benchmarkwith Rich Social Context for Fake News Detection on Short Vi-deo Platforms[C]//37th AAAI Conference on Artificial Intelligence.2023:14444-14452. [41] VASWANI A,SHAZEER N,PARMAR N,et al.Attention is All You Need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [42] BAI C,CHEN H,KUMAR S,et al.M2p2:Multimodal Persuasion Prediction Using Adaptive Fusion[J].IEEE Transactions on Multimedia,2021,25:942-952. [43] HERSHEY S,CHAUDHURI S,ELLIS D P W,et al.CNN Architectures for Large-Scale Audio Classification[C]//2017 IEEE International Conference on Acoustics,Speech and Signal Processing.2017:131-135. [44] LUO W.Research and Implementation of Text Topic Classification Based on Text CNN[C]//3rd International Conference on Computer Vision,Image and Deep Learning & International Conference on Computer Engineering and Applications.2022:1152-1155. [45] SIMONYAN K,ZISSERMAN A.Very Deep Convolutional Networks for Large-scale Image Recognition[C]//3rd International Conference on Learning Representations.2015:1-14. |
|