计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 255-264.doi: 10.11896/jsjkx.231100079
张军珲1,2, 昝红英1, 欧佳乐1, 阎子悦1, 张坤丽1
ZHANG Junhui1,2, ZAN Hongying1, OU Jiale1, YAN Ziyue1, ZHANG Kunli1
摘要: 大量水利异构数据的产生,为领域知识图谱的构建及应用提供了场景,但也导致了水利知识图谱构建过程的差异。针对现有水利知识图谱构建流程复杂的问题,提出了一套有效的基于知识标注平台的水利知识图谱构建流程。以小浪底水利枢纽工程知识的智能应用为例,使用该枢纽的工程数据,应用提出的流程在水利领域构建水利枢纽工程知识图谱(Water Conservancy Hub Project Knowledge Graph,WCHP-KG)。首先以小浪底水利枢纽工程为中心,依据行业术语标准和现有词汇表,制定了概念分类和关系描述体系,形成了WCHP-KG的模式层。通过BiLSTM-CRF和序列标注模型,在水利专家的指导下,使用知识标注平台对非结构化文本进行了半自动标注和人工校对,实现了知识融合,进而构建了WCHP-KG的数据层。结果表明WCHP-KG涵盖了43种水利实体以及110种实体关系。经过实践验证,构建的WCHP-KG为小浪底水利枢纽工程的相关应用提供了有力的结构化知识基础,为工程决策和管理提供了可靠的参考依据,进而证明了所提构建流程的有效性。未来将进一步扩展WCHP-KG和完善水利知识图谱的构建流程,以适应更多的应用场景和领域需求。
中图分类号:
[1] HANG T T,FENG J,LU J M.Knowledge Graph Construction Techniques:Classification,Investigation,and Future Directions[J].Computer Science,2021,48(2):175-189. [2] WANG M,WANG H F,LI B H,et al.Overview of Key Technologies for the New Generation Knowledge Graph[J].Compu-ter Research and Development,2022,59(9):1947-1965. [3] FENG J,XU X,LU J M.Construction and Application of Water Conservancy Information Knowledge Graph[J].Computer and Modernization,2019(9):35-40. [4] WANG L.The application of knowledge graph technology in thejoint scheduling of water conservancy projects in the Beijiang River Basin[J].Heilongjiang Water Conservancy Technology,2021,49(12):187-190. [5] CAI Y,XIE W J,CHENG Y L,et al.A review of key technology research on a national water conservancy map[J].Journal of Water Resources,2020,51(6):685-694. [6] DUAN H,HAN K,ZHAO H L,et al.Research on the construction of a comprehensive knowledge graph for water conservancy[J].Journal of Water Resources,2021,52(8):948-958. [7] WANG L,SUN W J.Comparative Study on Simulation of Rainfall Characteristics between HEC-HMS and Vflo Based on DEM Data:A Case Study of Miyun District,Beijing[J].Journal of Environmental Science,2019,39(10):3559-3565. [8] XIAO J Q,ZHOU X,PAN Y,et al.Application of GA-BP optimized TS fuzzy neural network water quality monitoring and evaluation system prediction model-taking the Taihu Lake as an example[J].Journal of Southwest University(Natural Science Edition),2019,41(12):110-119. [9] LIU M,FU B L,HE H C,et al.Water surface monitoring and water quality parameter inversion of the Li River based on multi temporal active and passive remote sensing(2016-2020)[J].Lake Science,2021,33(3):687-705. [10] HUILIN S Z W.Overview on the advance of the research onnamed entity recognition[J].Data Analysis and Knowledge Discovery,2010,26(6):42-47. [11] LIU X,ZHANG S,WEI F,et al.Recognizing named entities in tweets[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies.2011:359-367. [12] XU K,ZHOU Z,HAO T,et al.A bidirectional LSTM and conditional random fields approach to medical named entity recognition[C]//Proceedings of the International Conference on Advanced Intelligent Systems and Informatics 2017.Springer International Publishing,2018:355-365. [13] JIA Y,MA X.Attention in character-based BiLSTM-CRF forChinese named entity recognition[C]//Proceedings of the 2019 4th International Conference on Mathematics and Artificial Intelligence.2019:1-4. [14] KUMAR S.A survey of deep learning methods for relation extraction[J].arXiv:1705.03645,2017. [15] ZENG D,LIU K,LAI S,et al.Relation classification via convolutional deep neural network[C]//Proceedings of COLING 2014,the 25th International Conference on Computational Linguistics:Technical Papers.2014:2335-2344. [16] SOCHER R,HUVAL B,MANNING C D,et al.Semantic compositionality through recursive matrix-vector spaces[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.2012:1201-1211. [17] XU Y,MOU L,LI G,et al.Classifying relations via long short term memory networks along shortest dependency paths[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1785-1794. [18] ZENG D,LIU K,CHEN Y,et al.Distant supervision for relation extraction via piecewise convolutional neural networks[C]//Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing.2015:1753-1762. [19] SURDEANU M,TIBSHIRANI J,NALLAPATI R,et al.Multi-instance multi-label learning for relation extraction[C]//Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning.2012:455-465. [20] HE H,SUN X.A unified model for cross-domain and semi-su-pervised named entity recognition in chinese social media[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2017. [21] VASHISHTH S,JOSHI R,PRAYAGA S S,et al.RESIDE:Improving Distantly-Supervised Neural Relation Extraction using Side Information[C]//Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing.2018:1257-1266. [22] MIWA M,BANSAL M.End-to-End Relation Extraction usingLSTMs on Sequences and Tree Structures[C]//Proceedings of the 54th Annual Meeting of the Association for Computational Linguistics(Volume 1:Long Papers).Association for Computational Linguistics,2016. [23] CHEN S Y,LU D D,CHENG H M.Knowledge Graph Analysis of Water Resources Research in China Based on Technology Text Mining[J].Hydrology,2019,39(2):61-66. [24] JIN J L,CHEN P F,CHEN M L,et al.Bibliometric analysis of water resource carrying capacity research based on knowledge graph[J].Water Resources Protection,2019,35(6):14-24. [25] MAO W S,ZHAO H L,JIANG Y Z,et al.Construction and application of a knowledge graph for domestic water ecological environment research based on bibliometrics[J].Journal of Water Resources,2019,50(11):1400-1416. [26] LI Z Q,HU H.In recent years,research progress on water-sa-ving irrigation technology in China-a scientific knowledge graph analysis based on bibliometrics[J].Water Saving Irrigation,2015(8):104-109. [27] LIU X J,YANG X,FU H L.The Development Trend and Research Hotspot Analysis of Regenerated Water Research:A Graph Quantification Study Based on CiteSpace[J].Resources and Environment in Arid Areas,2019(4):68-75. [28] WANG X L,XUE X P,SUN R F.A Tracing Method for SuddenWater Pollution Events Based on Particle Swarm Optimization and Knowledge Graph[J].Hydroelectric Power,2020,46(2):17-21. [29] WANG J,TANG J,YANG M,et al.Improving OCR-basedimage captioning by incorporating geometrical relationship[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:1306-1315. [30] CHEN W,ZHA H,CHEN Z,et al.HybridQA:A Dataset of Multi-Hop Question Answering over Tabular and Textual Data[C]//Findings of the Association for Computational Linguistics:EMNLP 2020.2020:1026-1036. [31] ZHU F,LEI W,HUANG Y,et al.TAT-QA:A Question An-swering Benchmark on a Hybrid of Tabular and Textual Content in Finance[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing(Volume 1:Long Papers).2021:3277-3287. [32] ZHANG K L,ZHAO X,GUAN T F,et al.Construction and ap-plication of entity and relationship labeling platform for medical texts[J].J.Chin.Inf.Process,2020,34(6):36-44. [33] HOU M W,WEI R,LU L,et al.A review of knowledge graph research and its application in the medical field[J].Computer Research and Development,2018,55(12):2587-2599. |
|