计算机科学 ›› 2024, Vol. 51 ›› Issue (11): 292-297.doi: 10.11896/jsjkx.230500096

• 人工智能 • 上一篇    下一篇

基于DGA和稀疏化支持向量机的设备异常诊断

潘连荣1, 张福泉2, 何井龙1, 杨加意1   

  1. 1 广西电网有限责任公司电力调度控制中心 南宁 530023
    2 北京理工大学计算机学院 北京 100081
  • 收稿日期:2023-05-15 修回日期:2023-08-28 出版日期:2024-11-15 发布日期:2024-11-06
  • 通讯作者: 潘连荣(276574678@qq.com)
  • 基金资助:
    国家自然科学基金面上项目(61871204);福建省科技厅引导性项目(2018H0028);广西电网公司2023年科技项目(046000KK52222021)

Equipment Anomaly Diagnosis Based on DGA and Sparse Support Vector Machine

PAN Lianrong1, ZHANG Fuquan2, HE Jinglong1, YANG Jiayi1   

  1. 1 Power Dispatching Control Center,Guangxi Power Grid Co. LTD.,Nanning 530023,China
    2 School of Computer Science,Beijing Institute of Technology,Beijing 100081,China
  • Received:2023-05-15 Revised:2023-08-28 Online:2024-11-15 Published:2024-11-06
  • About author:PAN Lianrong,born in 1985.His main research interests include deep lear-ning,data processing and device anomaly analysis.
  • Supported by:
    General Project of the National Natural Science Foundation of China(61871204),Department of Science and Technology Fujian Province Guided Project(2018H0028) and Science and Technology Project of Guangxi Power Grid in 2023(046000KK52222021).

摘要: 为了有效提高基于机器学习的设备异常诊断的精度和效率,提出了一种基于稀疏化支持向量机的故障诊断模型。首先,对异常诊断的原理和特征气体进行了分析,给出了故障类型与特征气体的关系;其次,从4个方面对数据进行预处理,包括清洗、归一化、平衡和划分;然后,针对最小二乘支持向量机普遍存在的稀疏性缺乏问题,提出将数据样本映射到高维的核空间,并通过谱聚类算法对映射后的数据进行核空间距离聚类,以实现最小二乘支持向量机的数据预处理,从而实现其稀疏化;最后,在小样本数据集上进行了具体实验分析。结果表明,对于9种类型的故障,与其他基于不同类型支持向量机的诊断模型相比,所提诊断模型仅需11次迭代就可以获得最大适应度值,平均诊断准确率为96.67%,准确率和效率均更高。

关键词: 异常诊断, 机器学习, 最小二乘支持向量机, 油中溶解气体分析, 稀疏化

Abstract: In order to effectively improve the accuracy and efficiency of equipment anomaly diagnosis based on machine learning,a fault diagnosis model based on sparse support vector machine is proposed.Firstly,the principle of abnormal diagnosis and cha-racteristic gas are analyzed,and the relationship between fault types and characteristic gas is given.Secondly,the data is preprocessed from 4 aspects,including cleaning,normalization,balance and division.Then,in order to solve the problem of sparsity of least squares support vector machine,a method is proposed to map data samples to a high-dimensional kernel space,and cluster the mapped data in kernel space distance by spectral clustering algorithm,to realize the data preprocessing of least squares support vector machine,so as to realize its sparseness.Finally,the specific experimental analysis is carried out on a small sample dataset.The results show that,for 9 types of faults,compared with other diagnosis models based on different types of support vector machines,the proposed diagnosis model only needs 11 iterations to obtain the maximum fitness value,and the average diagnosis accuracy rate is 96.67%,with higher accuracy and efficiency.

Key words: Anomaly diagnosis, Machine learning, Least square support vector machine, Analysis of dissolved gas in oil, Rarefaction

中图分类号: 

  • TP391
[1] SONG L,WANG H,CHEN P.Step-by-step fuzzy diagnosismethod for equipment based on symptom extraction and trivalent logic fuzzy diagnosis theory[J].IEEE Transactions on Fuzzy Systems,2018,26(6):3467-3478.
[2] HSU J Y,WANG Y F,LIN K C,et al.Wind turbine fault diagnosis and predictive maintenance through statistical process control and machine learning[J].IEEE Access,2020,8:23427-23439.
[3] GAO J H,ZHANG Y.Fault diagnosis of ship regional distribution power system based on FWA-PSO-MSVM[J].Computer Science,2022,49(S2):956-960.
[4] LI X S,ZHANG Z Y.Fault diagnosis algorithm of transformer windings based on bayesian classification[J].Journal of University of Jinan(Science and Technology),2021,35(4):412-416.
[5] SAHRI Z B,MALAYSIA U T.Support vector machine-based fault diagnosis of power transformer using k nearest-neighbor imputed DGA dataset[J].Journal of Computer and Communications,2014,2(9):22-31.
[6] FENG Z L,XIAO H Q,REN W F,et al.Transformer fault diagnosis based on principal component analysis and seagull optimization support vector machine[J].China Measurement & Testing Technology,2023,49(2):99-105.
[7] MENG L,XU T L,MA J Y,et al.There Search of Ls-SVM Based on LMD Morphology filter[J].Journal of Harbin University of Science and Technology,2022,27(1):92-99.
[8] BUSTAMANTE S,MANANA M,ARROYO A,et al.Dissolved gas analysis equipment for online monitoring of transformer oil:A review[J].Sensors,2019,19(19):4057-4068.
[9] QIAN G,HU J,WANG S,et al.Adsorption and Sensing Pro-perties of Dissolved Gas in Oil on Cr-Doped InN Monolayer:A Density Functional Theory Study[J].Chemosensors,2022,10(1):30-42.
[10] ALTMAN E I,IWANICZ-DROZDOWSKA M,LAITINEN EK,et al.Financial distress prediction in an international context:A review and empirical analysis of Altman’s Z-score model[J].Journal of International Financial Management & Accounting,2017,28(2):131-171.
[11] DEVORE G R.Computing the Z score and centiles for cross-sectional analysis:a practical approach[J].Journal of Ultrasound in Medicine,2017,36(3):459-473.
[12] SOLTANZADEH P,HASHEMZADEH M.RCSMOTE:Range-Controlled synthetic minority over-sampling technique for handling the class imbalance problem[J].Information Sciences,2021,542:92-111.
[13] DENG W,YAO R,ZHAO H,et al.A novel intelligent diagnosis method using optimal LS-SVM with improved PSO algorithm[J].Soft Computing,2019,23:2445-2462.
[14] XIAO C,XIA W,JIANG J.Stock price forecast based on combined model of ARI-MA-LS-SVM[J].Neural Computing and Applications,2020,32:5379-5388.
[15] CHENG Y,ZHU H,WU J,et al.Machine health monitoringusing adaptive kernel spectral clustering and deep long short-term memory recurrent neural networks[J].IEEE Transactions on Industrial Informatics,2018,15(2):987-997.
[16] MENG Q J,YAO H C.Information assets behavior anomaly de-tection based on spectral clustering algorithm[J].Journal of Nanjing University of Science and Technology,2021,45(2):205-213.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!