计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300003-6.doi: 10.11896/jsjkx.240300003

• 智能计算 • 上一篇    下一篇

具有速度突变抑制的全向移动机器人视觉伺服预测控制

林叶贵, 戴志坚, 何德峰, 邢科新   

  1. 浙江工业大学信息工程学院 杭州 310023
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 何德峰(hdfzj@zjut.edu.cn)
  • 作者简介:(lyg@zjut.edu.cn)

Visual Servoing Predictive Control for Omnidirectional Mobile Robots with SuppressionofVelocity Abrupt Change

LIN Yegui, DAI Zhijian, HE Defeng, XING Kexin   

  1. College of Information Engineering,Zhejiang University of Technology,Hangzhou 310023,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:LIN Yegui,born in 1987,Ph.D.His main research interests include model predictive control and visual servoing of mobile robots.
    HE Defeng,born in 1979,Ph.D,professor.His research interests include mo-del predictive control and its applications to connected autonomous vehicles.

摘要: 在全向移动机器人视觉伺服任务过程中,为了解决由特征点的变化、车轮打滑、动态障碍等情况导致的速度突变问题,提出了一种基于神经动力学的quasi-min-max MPC视觉伺服策略。因为视觉误差的突变是引起速度突变的主要原因,所以该策略引入神经动力学模型对视觉误差进行处理,建立基于神经动力学的移动机器人视觉伺服线性参数时变预测模型,采用quasi-min-maxMPC策略获得最优速度解,从而抑制速度的突变,最终保证移动机器人能够以一个平滑的速度到达期望位姿。仿真结果验证了所提策略在抑制速度突变上的有效性。

关键词: 移动机器人, 视觉伺服, 神经动力学, quasi-min-max MPC

Abstract: During the visual servoing task of omnidirectional mobile robot,in order to solve the problem of sudden change of speed caused by the change of feature points,wheel slippage,dynamic obstacles and other situations,this paper proposes a neurodynamics-based visual servoing strategy for quasi-min-max MPC.Because the sudden change of visual error is the main cause of the sudden change of speed,the strategy deals with the visual error by introducing a neurodynamics model.A neurodynamics-based time-varying prediction model for the linear parameters of the visual servo of the mobile robot is established,and the quasi-min-max MPC strategy is used to obtain the optimal velocity solution,thus suppressing the sudden changes in velocity.Ultimately,it is ensured that the mobile robot can reach the desired position with a smooth velocity.Simulation results verify the effectiveness of the proposed strategy in suppressing the velocity mutation.

Key words: Mobile robot, Vision servoing, Neurodynamics, Quasi-min-max MPC

中图分类号: 

  • TP242
[1]NAZARI A A,ZAREINIA K,JANABI-SHARIFI F.Visual servoing of continuum robots:methods,challenges,and prospects[J].The International Journal of Medical Robotics + Computer Assisted Surgery,2022,18:e2384.
[2]LIANG X,WANG H,LIU Y,et al.Image-based position control of mobile robots with a completely unknown fixed camera[J].IEEE Transactions on Automatic Control.2018,63(9):3016-3023.
[3]SHAO Z,ZHANG J.Vision-based adaptive trajectory tracking control of wheeled mobile robot with unknown translational external parameters[J].IEEE/ASME Transactions on Mechatro-nics,2024,29(1):358-365.
[4]SHI H,XU M,HWANG K.A fuzzy adaptive approach to decoupled visual servoing for a wheeled mobile robot[J].IEEE Transactions on Fuzzy Systems,2020,28(12):3229-3243.
[5]HE D,HUANG H,CHEN Q.Quasi-min-max mpc for con-strained nonlinear systems with guaranteed input-to-state stabi-lity[J].Journal of the Franklin Institute.2014,351(6):3405-3423.
[6]HE D F,DING B C,YU S Y.Review of fundamental properties and topics of model predictive control for nonlinear systems[J].Control Theory and Applications,2013,30(3):273-287.
[7]WU J,JIN Z,LIU A,et al.A hybrid deep-q-network and model predictive control for point stabilization of visual servoing systems[J].Control Engineering Practice,2022,128:105314.
[8]BAI H,GAO J,SUN X,et al.Model Predictive Visual Trajectory-Tracking Control of Wheeled Mobile Robots[C]//2019 IEEE 28th International Symposium on Industrial Electronics(ISIE).2019:569-574.
[9]LI Z,YANG C,SU C,et al.Vision-based model predictive control for steering of a nonholonomic mobile robot[J].IEEE Transactions on Control Systems Technology.2016,24(2):553-564.
[10]CAO Z C,YIN L J,FU Y L,et al.Predictive control for visual servo stabilization of nonholonomic mobile robots[J].Acta Automatica Sinica,2013,39(8):1238-1245.
[11]LIU A,ZHANG W,YU L.Robust predictive tracking control for mobile robots with intermittent measurement and quantization[J].IEEE Transactions on Industrial Electronics(1982).2021,68(1):509-18.
[12]LIN Y G,XING K X,HE D F..Quasi-min-max mpc for visual servoing stabilization of omnidirectional wheeled mobile robots[J].Asian Journalof Control,2023,25(3):1924-1938.
[13]ZHU D Q,ZHANG G L,LI R.Biological inspired three-dimensional tracking control algorithm for autonomous underwater vehicles[J].CAAI Transactions on Intelligent Systems,2014,9(2):180-185.
[14]GHOMMAM J,MNIF F,DERBEL N.Global stabilisation and tracking control of underactuated surface vessels[J].IET Control Theory & Applications,2010,4(1):71-88.
[15]PAN C,LAI X,YANG S X,et al.An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics[J].Expert Systems with Applications,2013,40(5):1629-1635.
[16]CHU Z,ZHU D,YANG S X.Observer-based adaptive neuralnetwork trajectory tracking control for remotely operated vehicle[J].IEEE Transaction on Neural Networks and Learning Systems,2017;28(7):1633-1645.
[17]LEE S,JANG W,KIM C.Tracking-by-segmentation using super pixel-wise neural network[J].IEEE Access,2018,6:54982-54993.
[18]YAN T,XU Z,YANG S X.Consensus formation tracking for multiple AUV systems using distributed bioinspired sliding mode control[J].IEEE Transactions on Intelligent Vehicles,2023,8(2):1081-1092.
[19]XU Z,YAN T,YANG S X,et al.A hybrid tracking control strategy for an unmanned underwater vehicle aided with bio-inspired neural dynamics[J].IET Cyber-systems and Robotics,2022,4(3):153-162.
[20]XU Z,YANG S X,GADSDEN S A.Enhanced bioinspired backstepping control for a mobile robot with unscented kalman filter[J].IEEE Access,2020,8:125899-125908.
[21]XU Z,YANG S X,GADSDEN S A,et al.Backstepping and Sli-ding Mode Control for AUVs Aided with Bioinspired Neurodynamics[C]//2021 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2021:2113-2119.
[22]WANG C,LIU X,YANG X,et al.Trajectory tracking of anomni-directional wheeled mobile robot using a model predictive control strategy[J].Applied Sciences,2018,8(2):231.
[23]GROSSBERG S.Nonlinear neural networks:principles,mechanisms,and architectures[J].Neural Networks,1988,1(1):17-61.
[24]ZHANG W,WANG H B,SUN F C,et al.Finite-time control of mobile robot systems with unmeasurable angular and linear velocities via bioinspired neurodynamics approach[J].Applied Soft Computing,2019,85:105753.
[25]HE D F,YU S M.Input-to-state stabilizing model predictive control of multi-variables Hammerstein systems with bounded disturbances[J].Control Theory and Applications,2019,36(4):605-612.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!