计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240300003-6.doi: 10.11896/jsjkx.240300003
林叶贵, 戴志坚, 何德峰, 邢科新
LIN Yegui, DAI Zhijian, HE Defeng, XING Kexin
摘要: 在全向移动机器人视觉伺服任务过程中,为了解决由特征点的变化、车轮打滑、动态障碍等情况导致的速度突变问题,提出了一种基于神经动力学的quasi-min-max MPC视觉伺服策略。因为视觉误差的突变是引起速度突变的主要原因,所以该策略引入神经动力学模型对视觉误差进行处理,建立基于神经动力学的移动机器人视觉伺服线性参数时变预测模型,采用quasi-min-maxMPC策略获得最优速度解,从而抑制速度的突变,最终保证移动机器人能够以一个平滑的速度到达期望位姿。仿真结果验证了所提策略在抑制速度突变上的有效性。
中图分类号:
[1]NAZARI A A,ZAREINIA K,JANABI-SHARIFI F.Visual servoing of continuum robots:methods,challenges,and prospects[J].The International Journal of Medical Robotics + Computer Assisted Surgery,2022,18:e2384. [2]LIANG X,WANG H,LIU Y,et al.Image-based position control of mobile robots with a completely unknown fixed camera[J].IEEE Transactions on Automatic Control.2018,63(9):3016-3023. [3]SHAO Z,ZHANG J.Vision-based adaptive trajectory tracking control of wheeled mobile robot with unknown translational external parameters[J].IEEE/ASME Transactions on Mechatro-nics,2024,29(1):358-365. [4]SHI H,XU M,HWANG K.A fuzzy adaptive approach to decoupled visual servoing for a wheeled mobile robot[J].IEEE Transactions on Fuzzy Systems,2020,28(12):3229-3243. [5]HE D,HUANG H,CHEN Q.Quasi-min-max mpc for con-strained nonlinear systems with guaranteed input-to-state stabi-lity[J].Journal of the Franklin Institute.2014,351(6):3405-3423. [6]HE D F,DING B C,YU S Y.Review of fundamental properties and topics of model predictive control for nonlinear systems[J].Control Theory and Applications,2013,30(3):273-287. [7]WU J,JIN Z,LIU A,et al.A hybrid deep-q-network and model predictive control for point stabilization of visual servoing systems[J].Control Engineering Practice,2022,128:105314. [8]BAI H,GAO J,SUN X,et al.Model Predictive Visual Trajectory-Tracking Control of Wheeled Mobile Robots[C]//2019 IEEE 28th International Symposium on Industrial Electronics(ISIE).2019:569-574. [9]LI Z,YANG C,SU C,et al.Vision-based model predictive control for steering of a nonholonomic mobile robot[J].IEEE Transactions on Control Systems Technology.2016,24(2):553-564. [10]CAO Z C,YIN L J,FU Y L,et al.Predictive control for visual servo stabilization of nonholonomic mobile robots[J].Acta Automatica Sinica,2013,39(8):1238-1245. [11]LIU A,ZHANG W,YU L.Robust predictive tracking control for mobile robots with intermittent measurement and quantization[J].IEEE Transactions on Industrial Electronics(1982).2021,68(1):509-18. [12]LIN Y G,XING K X,HE D F..Quasi-min-max mpc for visual servoing stabilization of omnidirectional wheeled mobile robots[J].Asian Journalof Control,2023,25(3):1924-1938. [13]ZHU D Q,ZHANG G L,LI R.Biological inspired three-dimensional tracking control algorithm for autonomous underwater vehicles[J].CAAI Transactions on Intelligent Systems,2014,9(2):180-185. [14]GHOMMAM J,MNIF F,DERBEL N.Global stabilisation and tracking control of underactuated surface vessels[J].IET Control Theory & Applications,2010,4(1):71-88. [15]PAN C,LAI X,YANG S X,et al.An efficient neural network approach to tracking control of an autonomous surface vehicle with unknown dynamics[J].Expert Systems with Applications,2013,40(5):1629-1635. [16]CHU Z,ZHU D,YANG S X.Observer-based adaptive neuralnetwork trajectory tracking control for remotely operated vehicle[J].IEEE Transaction on Neural Networks and Learning Systems,2017;28(7):1633-1645. [17]LEE S,JANG W,KIM C.Tracking-by-segmentation using super pixel-wise neural network[J].IEEE Access,2018,6:54982-54993. [18]YAN T,XU Z,YANG S X.Consensus formation tracking for multiple AUV systems using distributed bioinspired sliding mode control[J].IEEE Transactions on Intelligent Vehicles,2023,8(2):1081-1092. [19]XU Z,YAN T,YANG S X,et al.A hybrid tracking control strategy for an unmanned underwater vehicle aided with bio-inspired neural dynamics[J].IET Cyber-systems and Robotics,2022,4(3):153-162. [20]XU Z,YANG S X,GADSDEN S A.Enhanced bioinspired backstepping control for a mobile robot with unscented kalman filter[J].IEEE Access,2020,8:125899-125908. [21]XU Z,YANG S X,GADSDEN S A,et al.Backstepping and Sli-ding Mode Control for AUVs Aided with Bioinspired Neurodynamics[C]//2021 IEEE International Conference on Robotics and Automation(ICRA).IEEE,2021:2113-2119. [22]WANG C,LIU X,YANG X,et al.Trajectory tracking of anomni-directional wheeled mobile robot using a model predictive control strategy[J].Applied Sciences,2018,8(2):231. [23]GROSSBERG S.Nonlinear neural networks:principles,mechanisms,and architectures[J].Neural Networks,1988,1(1):17-61. [24]ZHANG W,WANG H B,SUN F C,et al.Finite-time control of mobile robot systems with unmeasurable angular and linear velocities via bioinspired neurodynamics approach[J].Applied Soft Computing,2019,85:105753. [25]HE D F,YU S M.Input-to-state stabilizing model predictive control of multi-variables Hammerstein systems with bounded disturbances[J].Control Theory and Applications,2019,36(4):605-612. |
|