计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000086-9.doi: 10.11896/jsjkx.231000086
付明睿, 李卫疆
FU Mingrui, LI Weijiang
摘要: 情绪原因对抽取任务旨在同时抽取情感子句和原因子句。已有的方法把情绪原因对抽取看作情绪抽取、原因抽取和情绪原因对抽取3个独立的任务,不能有效捕捉到任务之间的联系。此外,现有的两阶段模型存在误差传播问题,并且情绪子句和原因子句间相对位置分布不平衡。文中提出了一个新的基于BERT、情感词典和位置感知交互模块的情绪原因对抽取模型MK-BERT。该模型首先用情感词典增强的BERT进行文本编码;其次,为了解决标签位置不平衡问题,根据情感子句和原因子句间的相对距离设计位置感知交互模块,以捕捉位置信息并构建情绪原因对的特征;最后,通过情绪预测模块和原因预测模块间交互编码,充分挖掘多个任务间的共享信息。在中文情绪原因对抽取数据集上进行实验,结果表明,所提模型可以有效地抽取情绪原因对,并且在位置不平衡样本上取得良好性能。
中图分类号:
[1]LEE S Y M,CHEN Y,HUANG C R.A text-driven rule-based system for emotion cause detection[C]//Proceedings of Computational Approaches to Analysis and Generation of Emotion in Text.2010:45-53. [2]XIA R,DING Z.Emotion-cause pair extraction:A new task to emotion analysis in texts[C]//Proceedings of the Association for Computational Linguistics.2019:1003-1012. [3]VASWANI A,SHAZEER N,PARMARN,et al.Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems.2017:6000-6010. [4]GUI L,HU J,HE Y,et al.A question answering approach foremotion cause extraction [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2017:1593-1602. [5]LI X,SONG K,FENG S,et al.A co-attention neural networkmodel for emotion cause analysis with emotional context awareness [C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2018:4752-4757. [6]YU X Y,WENG E.Multiple Level Hierarchical Network-Based Clause Selection for Emotion Cause Extraction[J].IEEE Access,2019:9071-9079. [7]DING Z,HE H,ZHANG M,et al.From Independent Prediction to Re-ordered Prediction:Integrating Relative Position and Global Label Information to Emotion Cause Identification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019,33:6343-6350. [8]XIA R,ZHANG M,DING Z.RTHN:A RNN-Transformer Hierarchical Network for Emotion Cause Extraction[C]//IJCAI.2019:5285-5291. [9]HU G,LU G,ZHAO Y.FSS-GCN:A graph convolutional net-works with fusion of semantic and structure for emotion cause analysis[J].Knowledge-Based Systems,2020,212(1):106584. [10]WEI P,ZHAO J,MAO W.Effective inter-clause modeling forend-to-end emotion-cause pair extraction[C]//Proceedings of the Association for Computational Linguistics.2020:3171-3181. [11]DING Z,XIA R,YU J.ECPE-2D:Emotion-cause pair extraction based on joint two-dimensional representation,interaction and prediction [C]//Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics.2020:3161-3170. [12]DING Z,XIA R,YU J.End-to-end emotion-cause pair extraction based on sliding window multi-label learning[C]//Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing.2020:3574-3583. [13]YUAN C,FAN C,BAO J,et al.Emotion-cause pair extraction as sequence labeling based on a novel tagging scheme[C]//Proceedings of the Conference on Empirical Methods in Natural Language Processing.2020:3568-3573. [14]TANG H,JI D,ZHOU Q.Joint multi-level attentional model for emotion detection and emotion-cause pair extraction[J].Neurocomputing,2020,409:329-340. [15]WU S,CHEN F,WU F,et al.A multi-task learning neural network for emotion-cause pair extraction[C]//Proceedings of the 24th European Conference on Artificial Intelligence.2020:1-8. [16]SONG H,SONG D.An end-to-end multi-task learning to link framework for emotion-cause pair extraction[C]//Proceedings of the International Conference on Image,Video Processing and Artificial Intelligence.2021:13-21. [17]YU J,LIU W,HE Y,et al.A Mutually Auxiliary MultitaskModel with Self-Distillation for Emotion-Cause Pair Extraction[J].IEEE Access,2021,99:1-1. [18]CHEN F,SHI Z,YANG Z,et al.Recurrent synchronization network for emotion-cause pair extraction[J].Knowledge-based Systems,2022:238. [19]CHEN Y,HOU W,LI S,et al.End-to-End Emotion-Cause Pair Extraction with Graph Convolutional Network[C]//International Conference on Computational Linguistics.2020. [20]WU Z,DAI X,XIA R.Pairwise tagging framework for end-to-end emotion-cause pair extraction[J].Frontiers of Computer Science,2023,17(2):1-10. [21]HUANG W C,YANG Y X,PENG Z Y,et al.Deep Neural Net-works Based on Span Association Prediction for Emotion-Cause Pair Extraction[J].Sensors,2022,22(10). [22]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.2019:4171-4186. [23]FAN C,YUAN C,DU J,et al.Transition-based directed graph construction for emotion-cause pair extraction[C]//Proceedings of the 58th Annual Meeting of the Association for Compu-tational Linguistics.2020:3707-3717. [24]CHENG Z,JIANG Z,YIN Y,et al.A Unified Target-Oriented Sequence-to-Sequence Model for Emotion-Cause Pair Extraction[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021:1-1. [25]FAN C,YUAN C,GUI L,et al.Multi-task Sequence Tagging for Emotion-Cause Pair Extraction via Tag Distribution Refinement[J].IEEE/ACM Transactions on Audio,Speech,and Language Processing,2021:1-1. [26]BAO Y,MA Q,WEI L,et al.Multi-Granularity Semantic AwareGraph Model for Reducing Position Bias in Emotion-Cause Pair Extraction[J].2022. |
|