计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 231000019-6.doi: 10.11896/jsjkx.231000019

• 智能计算 • 上一篇    下一篇

基于OPENMP的再入飞行器轨迹多重打靶法并行计算

李思瑶1,2,3, 李尚林1,2, 罗井知4   

  1. 1 湘南学院计算机与人工智能学院 湖南 郴州 423000
    2 湘南学院先进嵌入式计算技术与智能医疗系统湖南省工程研究中心 湖南 郴州 423000
    3 中山大学航空航天学院 广东 深圳 518107
    4 中南林业科技大学涉外学院信息与工程学院 长沙 410211
  • 出版日期:2024-11-16 发布日期:2024-11-13
  • 通讯作者: 李尚林(lsl@xnu.edu.cn)
  • 作者简介:(307144779@qq.com)

Parallel Computing of Reentry Vehicle Trajectory by Multiple Shooting Method Based onOPENMP

LI Siyao1,2,3, LI Shanglin1,2, LUO Jingzhi4   

  1. 1 School of Computer Science and Artificial Intelligence,Xiangnan University,Chenzhou,Hunan 423000,China
    2 School of Information and Engineering,Swan Colleage,Central South University of Forestry and Technology,Changsha,Hunan 423000,China
    3 School of Astronautics and Aeronautics,Sun Yat-sen University,Shenzhen,Guangdong 518107,China
    4 School of Information and Engineering,Swan College,Central South University of Forestry and Technologe,Changsha 410211,China
  • Online:2024-11-16 Published:2024-11-13
  • About author:LI Siyao,born in 1988,Ph.D.His main research interests include flight mechanics and control,parallel computing.
    LI Shanglin,born in 1987,Ph.D,associate professor.His main research interests include computer graphics and machine learning.

摘要: 实现基于多重打靶法将助推滑翔飞行器的轨迹优化问题变成非线性规划问题,用多重打靶法对三自由度再入轨迹进行优化,使用序列二次规划优化器进行优化,同时使用openmp进行并行计算,可以对等式约束中的积分进行并行计算。使用多重打靶法的再入轨迹优化算法,对模型进行并行计算。在MATLAB版本上使用的优化方法是内点法,而在C上面使用的优化方法是序列二次规划算法,C上面的程序是根据MATLAB转换的。仿真实验选取CAV-H模型进行计算,并行计算利用openmp获得了8.398倍加速比。多重打靶法与直接打靶法的结果基本一致,最小吸热量的多重打靶法的吸热量与以最小吸热量为目标函数的直接打靶法相差不多。通过仿真得出结论,线程数目在13时加速比最大,平均相对效率在93%以上。

关键词: 多重打靶法, 内点法, 序列二次规划, 并行计算

Abstract: The implementation is based on the multiple target method.By turning the trajectory optimization problem of a booster glider into a nonlinear programming problem,optimizing a three degree of freedom reentry trajectory,using openmp with sequence quadratic programming optimizer,it is possible to perform parallel computing on the integrals in equation constraints.Using multiple target methods constructs a reentry trajectory optimization algorithm,and performs parallel computation on the model.The optimization method used on the MATLAB version is the interior point method,while the optimization method used on C is the sequential quadratic programming algorithm.The above program is converted based on MATLAB.The CAV-H model is selected for computing in the simulation experiment.Parallel computing achieves 8.398 times the acceleration ratio using openmp.The results of the multiple target method and the direct target method are basically consistent.The heat absorption capacity of the minimum heat absorption multiple target method is not much different from that of the direct target method with the minimum heat absorption as the objective function.Through simulation,the acceleration ratio is the highest when the number of threads is 13,and the average relative efficiency is more than 93%.

Key words: Multiple target method, Interior point method, Sequential quadratic programming, Parallel computing

中图分类号: 

  • V448.2
[1]AN P T,HAI N N,HOAI T V.Direct multiple shooting method for solving approximate shortest path problems[J].Journal of Computational and Applied Mathematics,2013,244:67-76.
[2]王凯. 最优控制的直接打靶法实现与改进研究[D].武汉:华中科技大学,2019.
[3] SUBCHAN S.A direct multiple shooting method for missiletrajectory optimization with the terminal bunt manoeuvre[J].Journal for Technology and Science,2011,22(3):147-151.
[4]BETTS J T.Survey of Numerical Methods for Trajectory Optimization.Journal of Guidance[J].ontrol,and Dynamics,1998,21(2):193-207.
[5]HULL D G,SPEYER J L.Optimal Reentry and Plane-ChangeTrajectories[J].Journal of the Astronautical Sciences,1982,30(2):117-130.
[6]BOCK H G,PLITT K J.A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problem[C]//Proceeding of the 9th IFAC Conference.Budapest:1984:1603-1608.
[7]BOCK H G.Handling Path Constraints in a Direct MultipleShooting Method for Optimal Control Problems[M].Heidelberg,2006:42-45.
[8] LIU X,SHEN Z,LU P.Solving the maximum-crossrange problem via successive second-order cone programming with a line search [J].Aerospace Science and Technology,2015,47:10-20.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!