计算机科学 ›› 2024, Vol. 51 ›› Issue (11A): 240200069-7.doi: 10.11896/jsjkx.240200069
孔森林1, 张辉2, 黄镇南3, 刘优武1, 陶岩1
KONG Senlin1, ZHANG Hui2, HUANG Zhennan3, LIU Youwu1, TAO Yan1
摘要: 工业图像异常检测是大规模工业制造中的关键组成部分。针对工业图像异常检测存在的异常样本标注难度大、异常区域先验信息获取困难等问题,提出了一种基于非对称师生网络的无监督图像异常检测模型。首先,针对高相似结构师生网络导致的过模仿映射问题,设计了非对称师生网络,通过向学生网络残差块中引入上下文Transformer模块,为师生网络添加结构差异性,阻止学生网络过模仿教师网络的映射。其次,为了增强师生网络之间的泛化性差异,在教师网络中引入移动平均归一化层,以提高检测性能。最后,引入多尺度异常图融合机制,通过融合不同尺度的异常分数图,以更好地检测不同大小的异常。在MVTec AD公共数据集上进行了相关实验,实验结果中图像级别AUROC达到95.7%,像素级别AUROC达到97.4%,验证了该方法的可行性和有效性。
中图分类号:
[1]PANG G,SHEN C,CAO L,et al.Deep learning for anomaly detection:a review[J].ACM computing surveys(CSUR),2021,54(2):1-38. [2]LOWE D G.Distinctive image features from scale-invariant keypoints[J].International Journal of Computer Vision,2004,60(2):91-110. [3]ARRIS C,STEPHENS M.A combined corner and edge detector[C]//Alvey Vision Conference.1988. [4]WANG Z,WU F,HU Z.Msld:a robust descriptor for line matching[J].Pattern Recognition,2009,42(5):941-953. [5]ZHANG L,KOCH R.An efficient and robust line segmentmatching approach based on lbd descriptor and pairwise geometric consistency[J].Journal of Visual Communication and Image Representation,2013,24(7):794-805. [6]NISTÉR D,STEWÉNIUS H.Linear time maximally stable extremal regions[C]//Computer Vision-ECCV 2008:10th European Conference on Computer Vision,Marseille,France,Part II 10.Springer Berlin Heidelberg,2008:183-196. [7]XU Y,MONASSE P,GÉRAUD T,et al.Tree-based morse regions:a topological approach to local feature detection[J].IEEE Transactions on Image Processing,2014,23(12):5612-5625. [8]GIRSHICK R,DONAHUE J,DARRELL T,et al.Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2014:580-587. [9]CZIMMERMANN T,CIUTI G,MILAZZO M,et al.Visual-based defect detection and classification approaches for industrial applications-A survey[J].Sensors,2020,20(5):1459. [10]REN S,HE K,GIRSHICK R,et al.Faster r-cnn:towards real-time object detection with region proposal networks[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,2017,39(6):1137-1149. [11]YANG L,ZHONG J,ZHANG Y,et al.An improving faster-rcnn with multi-attention resnet for small target detection in intelligent autonomous transport with 6g [J].IEEE Transactions on Intelligent Transportation Systems,2023,24(7):7717-7725. [12]REDMON J,DIVVALA S,GIRSHICK R,et al.You only look once:unified,real-time object detection[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:779-788. [13]JIANG P,ERGU D,LIU F,et al.A review of yolo algorithm developments[J].Procedia Computer Science,2022,199:1066-1073. [14]LIU W,ANGUELOV D,ERHAN D,et al.Ssd:single shotmultibox detector[C]//Computer Vision-ECCV 2016:14th European Conference,Amsterdam,The Netherlands,Part I 14.Springer International Publishing,2016:21-37. [15]ZHENG W,TANG W,JIANG L,et al.Se-ssd:self-ensembling single-stage object detector from point cloud[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14494-14503. [16]SAMARIYA D,THAKKAR A.A comprehensive survey of anomaly detection algorithms[J].Annals of Data Science,2023,10(3):829-850. [17]BERGMANN P,LWE S,FAUSER M,et al.Improving unsu-pervised defect segmentation by applying structural similarity to autoencoders[C]//14th International Conference on Computer Vision Theory and Applications.2019. [18]POL A A,BERGER V,GERMAIN C,et al.Anomaly detection with conditional variational autoencoders[C]//2019 18th IEEE International Conference on Machine Learning And applications(ICMLA).IEEE,2019:1651-1657. [19]SONG J,KONG K,PARK Y I,et al.AnoSeg:anomaly segmentation network using self-supervised learning [EB/OL].(2021-10-7) [2024-02-19].https://doi.org/10.48550/arXiv.2110.03396,2021. [20]MADAN N,RISTEA N C,IONESCU R T,et al.Self-supervised masked convolutional transformer block for anomaly detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2023,46(1):525-542. [21]WAN Q,GAO L,LI X,et al.Unsupervised image anomaly detection and segmentation based on pretrained feature mapping[J].IEEE Transactions on Industrial Informatics,2022,19(3):2330-2339. [22]COHEN N,HOSHEN Y.Sub-image anomaly detection withdeep pyramid correspondences [EB/OL].(2020-05-05)[2024-02-19].https://doi.org/10.48550/arXiv.2005.02357,2020. [23]GUDOVSKIY D,ISHIZAKA S,KOZUKA K.Cflow-ad:real-time unsupervised anomaly detection with localization via conditional normalizing flows[C]//Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision(WACV).2022:98-107. [24]SALEHI M,SADJADI N,BASELIZADEH S,et al.Multiresolution knowledge distillation for anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:14902-14912. [25]DEFARD T,SETKOV A,LOESCH A,et al.Padim:a patch distribution modeling framework for anomaly detection and localization[C]//International Conference on Pattern Recognition.Cham:Springer International Publishing,2021:475-489. [26]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.2016:770-778. [27]LI Y,YAO T,PAN Y,et al.Contextual transformer networks for visual recognition[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2022,45(2):1489-1500. [28]CAI Z,RAVICHANDRAN A,MAJI S,et al.Exponential moving average normalization for self-supervised and semi-supervised learning[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2021:194-203. [29]BERGMANN P,FAUSER M,SATTLEGGER D,et al.Mvtec ad-a comprehensive real-world dataset for unsupervised anomaly detection[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.2019:9592-9600. |
|