计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 87-99.doi: 10.11896/jsjkx.240100169

• 计算机软件 • 上一篇    下一篇

开源软件开发者价值评估体系及其实证研究

游兰1, 田明炎1, 周烨1, 陈智军1, 王伟2, 金红1, 曾星1, 崔海波1   

  1. 1 湖北大学计算机与信息工程学院 武汉 430062
    2 华东师范大学(普陀校区)数据科学与工程学院 上海 200062
  • 收稿日期:2024-01-23 修回日期:2024-06-21 出版日期:2024-12-15 发布日期:2024-12-10
  • 通讯作者: 陈智军(chenzj@hubu.edu.cn)
  • 作者简介:(yoyo@hubu.edu.cn)
  • 基金资助:
    国家自然科学基金(61977021);湖北省重点研发计划(2022BAA044);湖北省教育厅科学研究计划(Q20211010)

Value Assessment System Oriented for Open-source Software Developers and Its Empirical Research

YOU Lan1, TIAN Mingyan1, ZHOU Ye1, CHEN Zhijun1, WANG Wei2, JIN Hong1, ZENG Xing1, CUI Haibo1   

  1. 1 School of Computer Science and Information Engineering, Hubei University, Wuhan 430062, China
    2 School of Data Science and Engineering, East China Normal University(Putuo Campus), Shanghai 200062, China
  • Received:2024-01-23 Revised:2024-06-21 Online:2024-12-15 Published:2024-12-10
  • About author:YOU Lan,born in 1978,Ph.D,professor,is a senior member of CCF(No.H8967M).Her main research interests include spatiotemporal big data,natural language processing,and social computing.
    CHEN Zhijun,born in 1977,professor,master’s supervisor.His main research interests include artificial intelligence and databases.
  • Supported by:
    National Natural Science Foundation of China(61977021),Key Research and Development Program of Hubei Province(2022BAA044) and Scientific Research Project of Education Department of Hubei Province(Q20211010).

摘要: 如何科学客观地评估开源软件开发者的价值是开源领域面临的一个重要问题。现有研究方法存在评估指标较单一、指标权重难以确定等问题。针对这些问题,依据开源生态大数据分析,结合主客观评估方法,提出了一种多维度、多层次的开源软件开发者价值评估体系。综合考虑开发者在项目管理、编程、团队协作、学习、敬业度等方面的表现,通过5个一级指标、12个二级指标和7个三级指标,较全面和客观地评估开源软件开发者的能力和价值。采用Critic方法确定各维度指标的权重,解决了经验权重导致的准确性不高的问题。最后,采用Github 2020年全域开源生态数据,展开了多组实证研究,验证了开源社区开发者价值评估体系的有效性和可行性,为开源软件人才的培养、发现和管理提供了一种客观、科学且操作性较强的衡量方法。实验代码可从Github平台获取1)

关键词: 开源软件, 开发者, 价值评估指标体系, 指标权重, 实证研究分析

Abstract: Assessing the value of open-source software developers in a scientific and objective manner is an important issue in the open-source field.Existing research methods encounter challenges,including the use of limited evaluation metrics and the complexities associated with determining metric weights.To mitigate these issues,this paper proposes a multi-dimensional and multi-level assessment system for open-source software developers.The system is informed by an analysis of big data from the open-source ecosystem and combines both subjective and objective evaluation methods.By considering developers’ performance in project management,programming,team collaboration,learning,and dedication,the proposed system comprehensively and objectively assesses their values using five primary indicators,twelve secondary indicators,and seven tertiary indicators.The Critic method is employed in this paper to determine the weights of various dimensions,overcoming the issue of low accuracy caused by experiential weights.Finally,multiple empirical studies are conducted using GitHub’s 2020 global open-source ecosystem data to validate the effectiveness and feasibility of the open-source community developer value assessment system.This research provides an objective,scientific,and practical method for measuring the talent,discovery,and management of open-source software developers.The experimental code can be Obtained from theGithub platform1).

Key words: Open-source software, Developer, Value evaluationsystem, Indicator weight, Empirical research analysis

中图分类号: 

  • TP311.5
[1]LI R N,TANG C.Analysis of influencing factors of open source hardware patent value and construction of evaluation index system[J].China Invention & Patent(Journal of Intellectual Property Information Science),2022,8:15-24.
[2]WU Z F,ZHU T T,XUAN Q,et al.Evaluation of Core Deve-lopers in Open Source Software by Contribution Allocation[J].Journal of Software,2018,29(8):2272-2282.
[3]TANG J J,CAO Y Z,ZHU J W,et al.Human resource value prediction of open source community software developers based on hybrid neural network[J].Computer Applications and Software,2021,38(8):64-77.
[4]YANG B,YU Q,ZHANG W,et al.Influence factors correlation analysis in GitHub open source software development process[J].Ruan Jian Xue Bao/Journal of Software,2017,28(6):1330-1342.
[5]OLIVA G.Characterizing key developers:A case study withapache ant[C]//Proceedings of the International Conference on Collaboration and Technology.Springer-Verlag,2012:97-112.
[6]LI Z X,YU Y,WANG T,et al.Empirical Study on Pull-request Revisions in Open Source Software Community of TensorFlow[J].Journal of Software,2023,34(9):1-13.
[7]YUAN S,TANG J,GU X T.A Survey on Scholar Profiling Techniques in the Open Internet[J].Journal of Computer Research and Development,2018,55(9):1903-1919.
[8]LIAO Z F,YANG H Y,SONG T H,et al.Developer Project Recommendation Model Based on CNN-LSTM in GitHub[J].Acta Electonica Sinica,2020,48(11):2202-2207.
[9]JIANG J,WU Q D,ZHANG L.Open Source Community Review Process Measurement System and Its Empirical Research[J].Journal of Software,2021,32(12):3698-3709.
[10]LEI J,YE H J,WU Z S,et al.Big-Data Platform Based on Open Source Ecosystem[J].Journalof Computer Research and Deve-lopment,2017,54(1):80-93.
[11]SOWE S K,STAMELOS I,ANGELIS L.Understanding know-ledge sharing activities in free/open source software projects:Anempirical study[J].Journal of Systemsand Software,2008,81(3):431-446.
[12]NAKAKOJI K,YAMAMOTO Y,NISHINAKA Y,et al.Evolution patterns of open-source software systems and communities[C]//Proceedings of the 14th International Workshop on Principles of Software Evolution.2002:76-85.
[13]HUNTER P,WALLI S.The rise and evolution of the open source software foundation[J].IFOSS L.Rev.,2013,5:31.
[14]CASALNUOVO C,VASILESCU B,DEVANBU P,et al.Deve-loper onboarding in GitHub:the role of prior social links and language experience[C]//Proceedings of the 2015 10th Joint Mee-ting on Foundations of Software Engineering.2015:817-828.
[15]YU Y,WANG H M,YIN G,et al.Reviewer recommendation for pull-requests in GitHub:What can we learn from code review and bug assignment[J].Information and Software Technology,2016,74:204-218.
[16]LENARDUZZI V,TAIBI D,TOSI D,et al.Open source software evaluation,selection,and adoption:a systematic literature review[C]//2020 46th Euromicro Conference on Software Engineering and Advanced Applications(SEAA).IEEE,2020:437-444.
[17]MOCKUS A,FIELDING R T,HERBSLEB J D.Two case stu-dies of open source software development:Apache and Mozilla[J].ACM Trans.on Software Engineering and Methodology,2002,11(3):309-346.
[18]YE Y,KISHIDA K.Toward an understanding of the motivation open source software developers[C]//Proceedings of the 25th International Conference on Software Engineering.Portland,2003:419-429.
[19]SEN R,SINGH S S,BORLE S.Open source software success:Measure and analysis[J].Decision Support Systems,2012,52(2):364-372.
[20]WANG T,YIN G,WANG H M,et al.Linking stack overflow to issue tracker for issue resolution[C]//Proceedings of the 6th Asia-Pacific Symposium on Internetware on Internetware.ACM Press,2014:11-14.
[21]CROWSTON K,WEI K,HOWISON J,et al.Free/Libre open-source software development:What we know and what we do not know[J].ACM Computing Surveys(CSUR),2012,44(2):7.
[22]WANG,Z D,YANG F,YI W,et al.Unveiling Elite Developers’ Activities in Open Source Projects[J].ACM Transactions on Software Engineering and Methodology(TOSEM),2019,29:1-35.
[23]BOC K,THOMA S,NILS A,et al.Automatic Core-DeveloperIdentification on GitHub:A Validation Study[J].ACM Tran-sactions on Software Engineering and Methodology,2023,32:1-29.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!