计算机科学 ›› 2024, Vol. 51 ›› Issue (12): 242-249.doi: 10.11896/jsjkx.231000057
向旺1, 王金光2, 王一飞1, 钱胜胜3
XIANG Wang1, WANG Jinguang2, WANG Yifei1, QIAN Shengsheng3
摘要: 社交媒体网站是人们在日常生活中分享信息、表达和交换意见的便捷平台。随着用户数量的不断增加,社交媒体网站上出现了大量的信息数据。然而,由于用户没有检查共享信息的可靠性,这些信息的真实性难以保证,从而导致大量虚假信息在社交媒体上广泛传播。然而,现有方法大多存在以下局限性:1)大多数方法通过简单提取文本与视觉特征,将其拼接后得到多模态特征来进行虚假信息判断,忽略了模态间和模态内细粒度内在联系,缺乏对关键信息的检索和筛选;2)多模态信息间缺乏指导性的特征提取,文本和视觉等特征之间缺乏交互增强,对多模态信息的理解不足。为了应对这些挑战,提出了一种新颖的基于多模态双协同Gather Transformer网络(Multimodal Dual-Collaborative Gather Transformer Network,MDCGTN)的虚假信息检测方法。在MDCGTN模型中,通过文本-视觉编码网络对文本和视觉信息的特征表示进行提取,将获得的视觉和文本特征表示输入多模态Gather Transformer网络进行多模态信息融合,使用Gather机制提取关键信息,充分捕捉和融合模态内和模态间细粒度关系。此外,设计了一个双协同机制对社交媒体帖子的多模态信息进行整合,以实现模态之间信息的交互和增强。在两个公开可用的基准数据集上进行了大量实验,结果表明,与现有的先进基准方法相比,所提方法准确率明显提升,证明了其对于虚假信息检测的优越性能。
中图分类号:
[1]CASTILLO C,MENDOZA M,POBLETE B.Information credibility on twitter[C]//Proceedings of the 20th International Conference on World Wide Web.2011:675-684. [2]KWON S,CHA M,JUNG K,et al.Prominent features of rumor propagation in online social media[C]//2013 IEEE 13th International Conference on Data Mining.IEEE,2013:1103-1108. [3]LIU X,NOURBAKHSH A,LI Q,et al.Real-time rumor debunking on twitter[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1867-1870. [4]MA J,GAO W,WEI Z,et al.Detect rumors using time series of social context information on microblogging websites[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:1751-1754. [5]MA J,GAO W,MITRA P,et al.Detecting rumors from micro-blogs with recurrent neural networks[C]//Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence.2016:3818-3824. [6]YU F,LIU Q,WU S,et al.A Convolutional Approach for Misinformation Identification[C]//IJCAI.2017:3901-3907. [7]WANG J,WANG Y C,HUANG M J.False information in social networks:Definition,detection and control[J].Computer Science,2021,48:263-277. [8]HAO X,MING L.Deepfake Video Detection Based on 3D Con-volutional Neural Networks[J].Computer Science,2021,48(7):86-92. [9]PROCTER R,CRUMP J,KARSTEDT S,et al.Reading theriots:What were the police doing on Twitter?[J].Policing and Society,2013,23(4):413-436. [10]WANG J,MAO H,LI H.FMFN:Fine-grained multimodal fusion networks for fake news detection[J].Applied Sciences,2022,12(3):1093. [11]QIAN S S,ZHANG T Z,XU C S.Survey of Multimedia Social Events Analysis[J].Computer Science,2021,48(3):97-112. [12]WU X K,ZHAO T F.Application of natural language proces-sing in social communication:A review and future perspectives[J].Computer Science,2020,47(6):184-193. [13]HAN Z M,ZHENG C Y,DUAN D G,et al.Associated Users Mining Algorithm Based on Multi-information Fusion Representation Learning[J].Computer Science,2019,46(4):77-82. [14]KHATTAR D,GOUD J S,GUPTA M,et al.Mvae:Multimodal variational autoencoder for fake news detection[C]//The World Wide Web Conference.2019:2915-2921. [15]SHANG L,KOU Z,ZHANG Y,et al.A duo-generative ap-proach to explainable multimodal covid-19 misinformation detection[C]//Proceedings of the ACM Web Conference.2022:3623-3631. [16]LIN H,MA J,CHENG M,et al.Rumor detection on twitter with claim-guided hierarchical graph attention networks[J].arXiv:2110.04522,2021. [17]CHEN M,CHU X,SUBBALAKSHMI K P.MMCoVaR:multimodal COVID-19 vaccine focused data repository for fake news detection and a baseline architecture for classification[C]//Proceedings of the 2021 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining.2021:31-38. [18]ZHOU X,MULAY A,FERRARA E,et al.Recovery:A multimodal repository for covid-19 news credibility research[C]//Proceedings of the 29th ACM International Conference on Information & Knowledge Management.2020:3205-3212. [19]SINGHAL S,KABRA A,SHARMA M,et al.Spotfake+:Amultimodal framework for fake news detection via transfer learning(student abstract)[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2020:13915-13916. [20]LIU J,FENG K,PAN J Z,et al.MSRD:Multimodal Web Rumor Detection Method[J/OL].https://www.researchgate.net/publication/347001640. [21]WANG Y,MA F,JIN Z,et al.Eann:Event adversarial neural networks for multi-modal fake news detection[C]//Proceedings of the 24th ACM Sigkdd International Conference on Knowledge Discovery & Data Mining.2018:849-857. [22]YAO L,MAO C,LUO Y.Graph convolutional networks for text classification[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2019:7370-7377. [23]ZHOU X,WU J,ZAFARANI R.Safe:similarity-aware multi-modal fake news detection[C]//Advances in Knowledge Disco-very and Data Mining:24th Pacific-Asia Conference.2020:354-367. [24]WEI Z X,LIANG J M.Design of Image Retrieval System Based on Speech Recognition[J].Applied Mechanics and Materials,2012,220:2371-2374. [25]XUE J,WANG Y,TIAN Y,et al.Detecting fake news by exploring the consistency of multimodal data[J].Information Processing & Management,2021,58(5):102610. [26]XU K,BA J,KIROS R,et al.Show,attend and tell:Neuralimage caption generation with visual attention[C]//InternationalConference on Machine Learning.PMLR,2015:2048-2057. [27]BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].arXiv:1409.0473,2014. [28]CHEN J,ZHANG H,HE X,et al.Attentive collaborative filtering:Multimedia recommendation with item-and component-le-vel attention[C]//Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:335-344. [29]WANG S,HU L,CAO L,et al.Attention-based transactionalcontext embedding for next-item recommendation[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2018. [30]VASWANI A,SHAZEER N,PARMAR N,et al.Attention is all you need[C]//Proceedings of the 31st International Confe-rence on Neural Information Processing Systems.2017:6000-6010. [31]BAEVSKI A,AULI M.Adaptive input representations for neural language modeling[J].arXiv:1809.10853,2018. [32]DAI Z,YANG Z,YANG Y,et al.Transformer-xl:Attentivelanguage models beyond a fixed-length context[J].arXiv:1901.02860,2019. [33]RAE J W,POTAPENKO A,JAYAKUMAR S M,et al.Compressive transformers for long-range sequence modelling[J].arXiv:1911.05507,2019. [34]RADFORD A,NARASIMHAN K,SALIMANS T,et al.Improving language understanding by generative pre-training[J/OL].https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf. [35]DEVLIN J,CHANG M W,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[J].arXiv:1810.04805,2018. [36]CHEN T,LI X,YIN H,et al.Call attention to rumors:Deep attention based recurrent neural networks for early rumor detection[C]//Trends and Applications in Knowledge Discovery and Data Mining.Springer International Publishing,2018:40-52. [37]GUO H,CAO J,ZHANG Y,et al.Rumor detection with hierarchical social attention network[C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management.2018:943-951. [38]KOU Z,ZHANG D Y,SHANG L,et al.Exfaux:A weakly supervised approach to explainable fauxtography detection[C]//2020 IEEE International Conference on Big Data(Big Data).IEEE,2020:631-636. [39]SHU K,CUI L,WANG S,et al.defend:Explainable fake news detection[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2019:395-405. [40]ZHANG W,GUI L,HE Y.Supervised contrastive learning for multimodal unreliable news detection in covid-19 pandemic[C]//Proceedings of the 30th ACM International Conference on Information & Knowledge Management.2021:3637-3641. [41]SINGHAL S,SHAH R R,CHAKRABORTY T,et al.Spot-fake:A multi-modal framework for fake news detection[C]//2019 IEEE fifth International Conference on Multimedia Big Data(BigMM).IEEE,2019:39-47. [42]WANG J,QIAN S,HU J,et al.Positive Unlabeled Fake News Detection Via Multi-Modal Masked Transformer Network[J].IEEE Transactions on Multimedia,2023,26:234-244. |
|