计算机科学 ›› 2025, Vol. 52 ›› Issue (1): 142-150.doi: 10.11896/jsjkx.240700186
刘冰, 徐鹏宇, 陆思进, 王诗菁, 孙宏健, 景丽萍, 于剑
LIU Bing, XU Pengyu, LU Sijin, WANG Shijing, SUN Hongjian, JING Liping, YU Jian
摘要: 随着互联网技术的发展以及社交网络的扩大,网络平台已经成为人们获取信息的一个重要途径。标签的引入提升了信息分类及检索效率。同时,标签推荐系统的出现不仅方便了用户输入标签,还提高了标签的质量。传统的标签推荐算法通常只考虑标签和项目两个主体,而忽略了用户在选择标签时个人意图所起到的重要作用。由于在标签推荐系统中标签最终由用户确定,因此用户的偏好在标签推荐中起着关键作用。为此,引入用户作为主体,并结合用户发布的历史帖子的先后顺序,将标签推荐任务建模为更加符合真实场景的序列标签推荐任务。提出了一种基于MLP的序列标签推荐方法(MLP for Sequential Tag Recommendation,MLP4STR),该方法显式地建模用户偏好用于引导整体标签推荐。MLP4STR采用一种跨特征对齐的MLP序列特征提取框架,将文本和标签的特征对齐,获取用户的历史帖子信息和历史标签信息中隐含的用户动态兴趣。最后,结合帖子内容和用户偏好进行标签推荐。在4个真实世界的数据集上得到的实验结果表明,MLP4STR能够有效地学习序列标签推荐中的用户历史行为序列的信息,其中,评价指标F1@5较最优的对比算法有显著提升。
中图分类号:
[1]KRESTEL R,FANKHAUSER P,NEJDL W,et al.Latentdirichlet allocation for tag recommendation[C]//Proceedings of the ACM Conference on Recommender Systems.New York:Association for Computing Machiery,2009:61-68. [2]BELÉM F M,ALMEIDA J M,GONÇALVES M A.A survey on tag recommendation methods[J].Journal of the Association for Information Science and Technology,2017,68(4):830-844. [3]XU P Y,LIU H F,LIU B.Survey of Tag RecommendationMethods Journal of Software[J].Journal of Software,2021,33(4):1244-1266. [4]SUN J S,ZHU M Y,JIANG Y C,et al.Hierarchical attention model for personalized tag recommendation[J].Journal of the Association for Information Science and Technology,2021,72(2):173-189. [5]SONG Y,ZHUANG Z M,LI H J,et al.Realtime automatic tag recommendation[C]//Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.New York:Association for Computing Machiery,2008:515-522. [6]XIA X,DAVID L,WANG X Y,et al.Tag recommendation insoftware information sites[C]//Proceedings of the 10th Wor-king Conference on Mining Software Repositories(MSR).Pisca-taway:IEEE Computer Society,2013:287-296. [7]WU Y,YAO Y,XU F,et al.Tag2word:Using tags to generate words for content based tag recommendation[C]//Proceedings of the 25th ACM International on Conference on Information and Knowledge Management.New York:Association for Computing Machiery,2016:2287-2292. [8]WU Y,XI S Q,YAO Y,et al.Guiding supervised topic modeling for content based tag recommendation[J].Neurocomputing,2018,314:479-489. [9]TANG S J,YAO Y,ZHANG S W,et al.An integral tag recommendation model for textual content[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Menlo Park:AAAI Press,2019:5109-5116. [10]LEI K,FU Q A,YANG M,et al.Tag recommendation by text classification with attention-based capsule network[J].Neurocomputing,2020,391:65-73. [11]LI Y,LIU T,JIANG J,et al.Hashtag recommendation withtopical attention-based lstm[C]//Proceedings of the 26th International Conference on Computational Linguistics:Technical Papers.New York:Association for Computing Machiery,2016:3019-3029. [12]HASSAN H A,SANSONETTI G,GASPARETTI F,et al.Semanticbased tag recommendation in scientific bookmarking systems[C]//Proceedings of the 12th ACM Conference on Recommender Systems.New York:Association for Computing Machiery,2018:465-469. [13]HE J D,XU B W,YANG Z,et al.PTM4Tag:Sharpening Tag Recommendation of Stack Overflow Posts with Pre-trained Models[C]//Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension.New York:Association for Computing Machinery,2022:1-11. [14]CHEN Y C,LAI K T,LIU D,et al.Tagnet:triplet-attention graph networks for hashtag recommendation[J].IEEE Transactions on Circuits and Systems for Video Technology,2021,32(3):1148-1159. [15]FENG K,LIU T,ZHANG H,et al.Tnod:Transformer network with object detection for tag recommendation[C]//Proceedings of the 2023 ACM International Conference on Multimedia Retrieval.2023:617-621. [16]LI L,WANG P,ZHENG X,et al.Dual-interactive fusion for code-mixed deep representation learning in tag recommendation[J].Information Fusion,2023,99:101862. [17]WANG L,LI Y.KEIC:A tag recommendation framework with knowledge enhancement and interclass correlation[J].Information Sciences,2023,645:119330. [18]SIGURBJÖRNSSON B,ZWOL R.Flickr tag recommendationbased on collective knowledge[C]//Proceedings of the International Conference on World Wide Web.New York:Springer,2008.327-336. [19]NGUYEN H,WISTUBA M,GRABOCKA J,et al.Personalized deep learning for tag recommendation[C]//Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mi-ning.Berlin:Springer,2017:186-197. [20]MAITY S K,PANIGRAHI A,GHOSH S,et al.DeepTagRec:A content-cum-user based tag recommendation framework for stack overflow[C]//Proceedings of European Conference on Information Retrieval.Switzerland,Springer,2019:125-131. [21]QUINTANILLA E,RAWAT Y,SAKRYUKIN A,et al.Adversarial learning for personalized tag recommendation[C]//IEEE Transactions on Multimedia.Piscataway:IEEE Computer Society,2020,23:1083-1094. [22]ZHANG S W,YAO Y,XU F,et al.Hashtag recommendationfor photo sharing services[C]//Proceedings of the AAAI Conference on Artificial Intelligence.Menlo Park:AAAI Press,2019:5805-5812. [23]KANG W C,MCAULEY J.Self-attentive sequential recommendation[C]//2018 IEEE International Conference on Data Mi-ning(ICDM).Piscataway:IEEE Computer Society,2018:197-220. [24]ZHANG T T,ZHAO P P,LIU Y C,et al.Feature-level deeper self-attention network for sequential recommendation[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,2019:4320-4326. [25]ZHOU P L,YE Q C,XIE Y Q,et al.Attention Calibration for Transformer-based Sequential Recommendation[C]//Procee-dings of the 32nd ACM International Conference on Information and Knowledge Management.2023:3595-3605. [26]SUN F,LIU J,WU J,et al.Bert4rec:Sequential recommendation with bidirectional encoder representations from transformer[C]//Proceedings of the 28th ACM International Conference on Information and Knowledge Management.New York:Association for Computing Machiery,2019:1441-1450. [27]ZHENG J,RAMASINGHE S,LUCEY S.Rethinking positional encoding[J].arXiv:2107.02561.2021. [28]LI M,ZHAO X,LYU C,et al.MLP4Rec:A pure MLP architecture for sequential recommendations[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,2022:2138-2144. [29]EKAMBARAM V,JATI A,NGUYEN N,et al.TSMixer:Lightweight MLP-Mixer Model for Multivariate Time Series Forecasting[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.New York:Association for Computing Machiery,2023:459-469. [30]DEVLIN J,CHANG MW,LEE K,et al.Bert:Pre-training of deep bidirectional transformers for language understanding[C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies.Stroudsburg:Association for Computational Linguistics,2019:4171-4186. [31]KUMAR S,SHIVANI A,AKHTAR M S,et al.When did you become so smart,oh wise one?Sarcasm Explanation in Multi-modal Multi-party Dialogues[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistic.2022:5956-5968. [32]LI M Y,ZHANG Z J,ZHAO X Y,et al.AutoMLP:Automated MLP for Sequential Recommendations[C]//Proceedings of the ACM Web Conference.New York:Association for Computing Machiery,2023:1190-1198. [33]LIANG J H,ZHAO X Y,LI M Y,et al.MMMLP:multi-modal multilayer perceptron for sequential recommendations[C]//Proceedings of the ACM Web Conference 2023.2023:1109-1117. [34]GONG Y Y,ZHANG Q.Hashtag recommendation using attention-based convolutional neural network[C]//Proceedings of International Joint Conference on Artificial Intelligence.San Francisco:Morgan Kaufmann,2016:2782-2788. [35]SUN B,ZHU Y Z,XIAO Y K,et al.Automatic Question Tagging with Deep Neural Networks[J].IEEE Transactions on Learning Technologies.Piscataway:IEEE Computer Society,2019:29-43. |
|