计算机科学 ›› 2025, Vol. 52 ›› Issue (2): 183-190.doi: 10.11896/jsjkx.240400131
杜乾刚1, 彭博2, 池明旻1
DU Qiangang1, PENG Bo2, CHI Mingmin1
摘要: 遥感变化检测在军事和民用领域都发挥着至关重要的作用。然而,由于变化检测图像对的数据采集存在巨大的时空差距,因此存在大量伪变化。现有的变化检测方法基于双流孪生网络学习物体特征,然后通过一系列专有网络进行伪变化消除。然而,这种相互独立的去噪方式缺乏捕捉图像对之间相互依存关系的能力,而且往往由于过度关注去噪设计而导致大量的细粒度信息丢失。所提CFIR 利用图像对的数据结构特征来增强模型学习上下文依赖关系的能力,并弥补丢失的细粒度信息,缓解了细粒度信息丢失的问题。此外,CFIR 采用一种门控机制,消除变化检测任务中的伪变化,并引导网络提取相关的变化特征,缓解了变化检测极端的数据不平衡对模型学习真实变化的影响。CFIR 在多个变化检测基准中表现出了极具竞争力的性能,其中相较于变化检测最先进算法,在LEVIR-CD数据集上F1提高0.21%,IoU提高0.38%;在WHU-CD数据集上F1提高0.99%,IoU提高2.43%。
中图分类号:
[1]CHEN H,SHI Z.A Spatial-Temporal Attention-Based Method and a New Dataset for Remote Sensing Image Change Detection[J].Remote Sensing,2020,12(10):1662. [2]JI S,WEI S,LU M.Fully Convolutional Networks for Multi-source Building Extraction From an Open Aerial and Satellite Imagery Data Set[J].IEEE Transactions on Geoscience and Remote Sensing,2019,57(1):574-586. [3]LEBEDEV M A,VIZILTER Y V,VYGOLOV O V.et al.Change Detection in Remote Sensing Images Using Conditional Adversarial Networks[J].The International Archives of the Photogrammetry,Remote Sensing and Spatial Information Sciences,2018,XLII-2:565-571. [4]ZHANG C,YUE P,TAPETE D,et al.A deeply supervisedimage fusion network for change detection in high resolution bi-temporal remote sensing images[J].ISPRS Journal of Photogrammetry and Remote Sensing,2020,166:183-200. [5]DAUDT R C,LE SAUX B,BOULCH A.Fully ConvolutionalSiamese Networks for Change Detection[J].arXiv:1810.08462v1,2018. [6]CHEN C P,HSIEH J W,CHENP Y,et al.SARAS-Net:Scale and Relation Aware Siamese Network for Change Detection[J].Proceedings of the AAAI Conference on Artificial Intelligence,2023,37(12):14187-14195. [7]CHEN H,QI Z,SHI Z.Remote Sensing Image Change Detection With Transformers[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-14. [8]DING X,GUO Y,DING G,et al.ACNet:Strengthening theKernel Skeletons for Powerful CNN via Asymmetric Convolution Blocks[J].arXiv:1908.03930,2019. [9]FANG S,LI K,SHAO J,et al.SNUNet-CD:A Densely Connec-ted Siamese Network for Change Detection of VHR Images[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5. [10]CODEGONI A,LOMBARDI G,FERRARI A,TINYCD:A(Not So) Deep Learning Model For Change Detection[J].arXiv:2207.13159,2022. [11]MA X W,YANG J W,HONG T F,et al.STNet:Spatial andTemporal feature fusion network for change detection in remote sensing images[J].arXiv:2304.11422,2023. [12]FANG Z L,LI K Y.Changer Feature Interaction is What You Need for Change Detection[J].arXiv.2209.08290,2022. [13]BANDARA W G C,PATEL V M.A Transformer-Based Sia-mese Network for Change Detection[C]//2022 IEEE International Geoscience and Remote Sensing Symposium(IGARSS 2022).2022:207-210. [14]LEI T,WANG J,NING H,et al.Difference Enhancement andSpatial-Spectral Nonlocal Network for Change Detection in VHR Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-13. [15]LI Z,TANG C,WANGL,et al.Remote Sensing Change Detection via Temporal Feature Interaction and Guided Refinement[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-11. [16]LI Z,YAN C,SUN,Y,et al.A Densely Attentive Refinement Network for Change Detection Based on Very-High-Resolution Bitemporal Remote Sensing Images[J].IEEE Transactions on Geoscience and Remote Sensing,2022,60:1-18. [17]LIN T Y,DOLLAR P,GIRSHICK R,et al.Feature Pyramid Networks for Object Detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition(CVPR).2017:936-944. [18]LV Z,WANG F,CUI G,et al.Spatial-Spectral Attention Network Guided With Change Magnitude Image for Land Cover Change Detection Using Remote Sensing Images[J].IEEE Transactionson Geoscience and Remote Sensing,2022,60:1-12. [19]LYU H,LU H.Learning a transferable change detection methodby Recurrent Neural Network[C]//2016 IEEE International Geoscience and Remote Sensing Symposium(IGARSS).2016:5157-5160. [20]HE K,ZHANG X,REN S,et al.Deep Residual Learning forImage Recognition[J].arXiv:1512.03385,2015. [21]RUßWURM M,KORNER M.Temporal Vegetation ModellingUsing Long Short-Term Memory Networks for Crop Identification from Medium-Resolution Multi-spectral Satellite Images[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops(CVPRW).2017:1496-1504. [22]VARGHESE A,GUBBI J,RAMASWAMY A,et al.Change-Net:A Deep Learning Architecture for Visual Change Detection[C]//Computer Vision-ECCV 2018.2019:129-145. [23]BAI B,FU W,LU T,et al.Edge-Guided Recurrent ConvolutionalNeural Network for Multitemporal Remote Sensing Image Building Change Detection[J].IEEE Transactions on Geos-cience and Remote Sensing,2022.60:1-13. [24]YANG B,QIN L,LIU J,et al.IRCNN:An Irregular-Time-Distanced Recurrent Convolutional Neural Network for Change Detection in Satellite Time Series[J].IEEE Geoscience and Remote Sensing Letters,2022,19:1-5. [25]VASWANI A,SHAZEER N,PARMAR N,et al.Attention isall you need[J].arXiv:1706.03762,2017. [26]WANG S P,LI Y X,XIE M,et al.Align,Perturb and Decouple:Toward Better Leverage of Difference Information for RSI Change Detection[J].arXiv:2305.18714,2023. |
|