计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 161-168.doi: 10.11896/jsjkx.240500015
陆海洋1, 柳先辉2, 侯文龙1
LU Haiyang1, LIU Xianhui2, HOU Wenlong1
摘要: 为了解决信息过载的问题,推荐系统被广泛研究。由于很难获取大量高质量的显式反馈数据,隐式反馈数据成为训练推荐系统的主流选择。从未标记的数据中采样负例,即负采样,对于训练基于隐式反馈的推荐模型非常重要。现有推荐系统的负采样方法往往只关注如何选择包含更多用户偏好信息的强负样例,却没有考虑强负样例的假阴性问题。为了降低采样得到的负样例的假阴性概率并提高其信息量,提出了一种融合知识图谱的负采样方法。首先,根据用户-项目知识图谱构建负样例候选集;然后,通过基于贝叶斯分类的方式从候选集中筛选假阴性概率最小的负样例;最后,基于Mixup策略引入正混合技术构建强负样例。为了验证所提出方法的有效性,在两个公开数据集上进行了实验。结果表明,与现有方法相比,所提方法表现更优。
中图分类号:
[1]GOLDBERG D,NICHOLS D,OKI B M,et al.Using collaborative filtering to weave an information tapestry[J].Communications of the ACM,1992,35(12):61-70. [2]KABBUR S,NING X,KARYPIS G.Fism:factored item simila-rity models for top-n recommender systems[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2013:659-667. [3]KOREN Y.Factorization meets the neighborhood:a multiface-ted collaborative filtering model[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Disco-very and Data Mining.2008:426-434. [4]HE X,DENG K,WANG X,et al.Lightgcn:Simplifying andpowering graph convolution network for recommendation[C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval.2020:639-648. [5]WANG X,HE X,WANG M,et al.Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval.2019:165-174. [6]WANG X,HE X,CAO Y,et al.Kgat:Knowledge graph attention network for recommendation[C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Disco-very & Data Mining.2019:950-958. [7]GUO X W,XIA H B,LIU Y.Hybrid Recommendation Model of Knowledge Graph and Graph Convolutional Network[J].Journal of Frontiers of Computer Science and Technology,2022,16(6):1343-1353. [8]LAI R,CHEN L,ZHAO Y,et al.Disentangled negative sampling for collaborative filtering[C]//Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining.2023:96-104. [9]RENDLE S,FREUDENTHALER C,GANTNER Z,et al.BPR:Bayesian personalized ranking from implicit feedback[J].arXiv:1205.2618,2012. [10]LIU B,WANG B.Bayesian Negative Sampling for Recommendation[C]//2023 IEEE 39th International Conference on Data Engineering.2023:749-761. [11]ZHANG H,CISSE M,DAUPHIN Y N,et al.mixup:Beyondempirical risk minimization[J].arXiv:1710.09412,2017. [12]SUN Z,GUO Q,YANG J,et al.Research commentary on recommendations with side information:A survey and research directions[J].Electronic Commerce Research and Applications,2019,37:100879. [13]SARWAR B,KARYPIS G,KONSTAN J,et al.Item-based collaborative filtering recommendation algorithms[C]//Procee-dings of the 10th International Conference on World Wide Web.2001:285-295. [14]YOO H,CHUNG K.Deep learning-based evolutionary recommendation model for heterogeneous big data integration[J].Transactions on Internet and Information Systems,2020,14(9):3730-3744. [15]RAO Z Y,ZHANG Y,LIU J T,et al.Recommendation methods and systems using knowledge graph[J].Acta Automatica Sinica,2021,47(9):2061-2077. [16]SHI C,ZHANG Z,LUO P,et al.Semantic path based persona-lized recommendation on weighted heterogeneous information networks[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:453-462. [17]WANG H,ZHANG F,WANG J,et al.Ripplenet:Propagating user preferences on the knowledge graph for recommender systems[C]//Proceedings of the 27th ACM International Confe-rence on Information and Knowledge Management.2018:417-426. [18]MA H D,FANG Y Q.Dynamic Negative Sampling for Graph Convolution Network Based Collaborative Filtering Recommendation Model[J].Computer Science,2023,50(S2):489-495. [19]DIAZ-AVILES E,DRUMOND L,SCHMIDT-THIEME L,et al.Real-time top-n recommendation in social streams[C]//Proceedings of the Sixth ACM Conference on Recommender Systems.2012:59-66. [20]CUI P,LIU S,ZHU W.General knowledge embedded imagerepresentation learning[J].IEEE Transactions on Multimedia,2017,20(1):198-207. [21]HE X,ZHANG H,KAN M Y,et al.Fast matrix factorization for online recommendation with implicit feedback[C]//Procee-dings of the 39th International ACM SIGIR Conference on Research and Development in Information Retrieval.2016:549-558. [22]TOGASHI R,OTANI M,SATOH S.Alleviating cold-startproblems in recommendation through pseudo-labelling over knowledge graph[C]// Proceedings of the 14th ACM International Conference on Web Search and Data Mining.2021:931-939. [23]RENDLE S,FREUDENTHALER C.Improving pairwise lear-ning for item recommendation from implicit feedback[C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining.2014:273-282. [24]ZHANG W,CHEN T,WANG J,et al.Optimizing top-n collabo-rative filtering via dynamic negative item sampling[C]//Proceedings of the 36th International ACM SIGIR Conference on Research and Development in Information Retrieval.2013:785-788. [25]ZHAO T,MCAULEY J,KING I.Improving latent factor mo-dels via personalized feature projection for one class recommendation[C]// Proceedings of the 24th ACM International on Conference on Information and Knowledge Management.2015:821-830. [26]YU L,ZHOU G,ZHANG C,et al.RankMBPR:Rank-awaremutual bayesian personalized ranking for item recommendation[C]//Web-Age Information Management:17th International Conference.2016:244-256. [27]ZHAO Y,GUO G B,JIANG L Y.Adversarial Sampling for Social Recommender[J].Journal of Cyber Security,2021,6(5):88-98. [28]DING J,QUAN Y,YAO Q,et al.Simplify and robustify negative sampling for implicit collaborative filtering[J].Advances in Neural Information Processing Systems,2020,33:1094-1105. [29]HUANG T,DONG Y,DING M,et al.Mixgcf:An improvedtraining method for graph neural network-based recommender systems[C]// Proceedings of the 27th ACM SIGKDD Confe-rence on Knowledge Discovery & Data Mining.2021:665-674. [30]WANG J,YU L,ZHANG W,et al.Irgan:A minimax game for unifying generative and discriminative information retrieval models[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval.2017:515-524. [31]PARK D H,CHANG Y.Adversarial sampling and training for semi-supervised information retrieval[C]//The World Wide Web Conference.2019:1443-1453. [32]ZHAO Y H,LIU L,WANG H L,et al.Survey of Knowledge Graph Recommendation System Research[J].Journal of Frontiers of Computer Science and Technology,2023,17(4):771-791. [33]ANAGNOSTOPOULOS A,KUMAR R,MAHDIAN M.Influence and correlation in social networks[C]//Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2008:7-15. [34]KALANTIDIS Y,SARIYILDIZ M B,PION N,et al.Hard negative mixing for contrastive learning[J].Advances in Neural Information Processing Systems,2020,33:21798-21809. [35]KOREN Y,BELL R,VOLINSKY C.Matrix factorization techniques for recommender systems[J].Computer,2009,42(8):30-37. |
|