计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 197-205.doi: 10.11896/jsjkx.240700151
解培中, 李冠进, 李汀
XIE Peizhong, LI Guanjin, LI Ting
摘要: 知识追踪要求基于学习者的历史作答情况来预测未来的答题表现,并评估知识状态的变化。探索学习者知识状态的变化有助于实现个性化服务,如课程推荐和试题推荐。然而,现有的大多数知识追踪模型在建模时考虑的特征不够全面,不能综合衡量学习者知识状态的变化。针对这一问题,提出一种新的知识追踪模型——基于试题-知识点异构图和多特征融合的知识追踪模型(EKMFKT)。具体而言,从学习者的学习过程出发,研究了两种行为特征(尝试次数和提示次数)以及两种时间特征(响应时间和间隔时间)对知识状态的影响。然后,设计了学习门和遗忘门,以模拟知识的获取和遗忘,全面更新知识状态的变化。另外,对于模型的输入,设计了基于试题-知识点异构图的图嵌入方法来预训练试题表示,使得模型的输入保持试题和知识点的关联。在两个公开数据集上的实验结果表明,EKMFKT在预测性能上优于现有模型。通过引入多个特征并确保试题与知识点的关联,EKMFKT使知识状态的变化更合理,增强了模型的可解释性。
中图分类号:
[1]WANG Y,ZHU M X,YANG S H,et al.Review and Perfor-mance Comparison of Deep Knowledge Tracing Models[J].Ruan Jian Xue Bao/Journal of Software,2023,34(3):1365-1395. [2]ABDELRAHMAN G,WANG Q,NUNES B.Knowledge trac-ing:A survey[J].ACM Computing Surveys 2023,55(11):1-37. [3]WU Z,LI M,TANG Y,et al.Exercise recommendation based on knowledge concept prediction [J].Knowledge-Based Systems,2020,210:106481. [4]REN Y,LIANG K,SHANG Y,et al.MulOER-SAN:2-layermulti-objective framework for exercise recommendation with self-attention networks [J].Knowledge-Based Systems,2023,260:110117. [5]SONG X,LI J,CAI T,et al.A survey on deep learning-based knowledge tracing [J].Knowledge-Based Systems,2022,258:110036. [6]ZHANG Y,YANG Q.A survey on multi-task learning [J].IEEE Transactions on Knowledge and Data Engineering,2021,34(12):5586-5609. [7]DEVLIN J,CHANG M W,LEE K,et al.BERT:Pre-training of deep bidirectional transformers for language understanding [C]//Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies,Volume 1(Long and Short Papers).Minneapolis,MN:Association for Computational Linguistics,2019:4171-4186. [8]HE K,ZHANG X,REN S,et al.Deep residual learning forimage recognition [C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Las Vegas,NV:IEEE,2016:770-778. [9]SHEN S,LIU Q,CHEN E,et al.Learning process-consistentknowledge tracing [C]//Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.2021:1452-1460. [10]XU B,HUANG Z,LIU J,et al.Learning behavior-orientedknowledge tracing[C]//Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.2023:2789-2800. [11]CORBETT A T,ANDERSON J R.Knowledge tracing:Mode-ling the acquisition of procedural knowledge [J].User Modeling and User-adapted Interaction,1994,4:253-278. [12]PAVLIK JR P I,CEN H,KOEDINGER K R.Performance Factors Analysis--A New Alternative to Knowledge Tracing[C]//Conference on Artificial Intelligence in Education:Building Learning Systems That Care:from Knowledge Representation to Affective Modelling.2009:531-538. [13]EMBRETSON S E,REISE S P.Item response theory[M].Psychology Press,2013. [14]PIECH C,BASSEN J,HUANG J,et al.Deep knowledge tracing [J].Advances in Neural Information Processing Systems,2015,25:505-513. [15]LIU Y,YANG Y,CHEN X,et al.Improving knowledge tracing via pre-training question embeddings [C]//Proceedings of the 30th International Joint Conference on Artificial Intelligence(IJCAI).2021:1577-1583. [16]LIU Q,HUANG Z,YIN Y,et al.Ekt:Exercise-aware know-ledge tracing for student performance prediction [J].IEEE Transactions on Knowledge and Data Engineering,2019,33(1):100-115. [17]YAN Q Y,SI Y Q,YUAN G.Student-Problem AssociationBased Heterogeneous Graph Knowledge Tracing Model[J].Acta Electronica Sinica,2023,51(12):3549-3556. [18]GHOSH A,HEFFERNAN N,LAN A S.Context-aware attentive knowledge tracing [C]//Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining.2020:2330-2339. [19]NAGATANI K,ZHANG Q,SATO M,et al.Augmentingknowledge tracing by considering forgetting behavior [C]//The World Wide Web Conference.2019:3101-3107. [20]ZHAO W,XIA J,JIANG X,et al.A novel framework for deep knowledge tracing via gating-controlled forgetting and learning mechanisms [J].Information Processing & Management,2023,60(1):103-114. [21]WANG X,JI H,SHI C,et al.A survey on heterogeneous network representation learning [J].IEEE Transactions on Know-ledge and Data Engineering,2020,32(12):2306-2324. [22]MIKOLOV T,SUTSKEVER I,CHEN K,et al.Distributed representations of words and phrases and their compositionality [J].Advances in Neural Information Processing Systems,2013,26:3111-3119. [23]PEROZZI B,AL-RFOU R,SKIENA S.Deepwalk:Online lear-ning of social representations [C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2014:701-710. [24]TANG J,QU M,WANG M,et al.Line:Large-scale information network embedding [C]//Proceedings of the 24th International Conference on World Wide Web.2015:1067-1077. [25]GROVER A,LESKOVEC J.node2vec:Scalable feature learning for networks [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mi-ning.2016:855-864. [26]DONG Y,CHAWLA N V,SWAMI A.metapath2vec:Scalable representation learning for heterogeneous networks [C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2017:135-144. [27]FALMAGNE J C,COSYN E,DOIGNON J P,et al.The assessment of knowledge,in theory and in practice [C]//IEMC’03 Proceedings:Managing Technologically Driven Organizations:The Human Side of Innovation and Change(IEEE Cat.No.03CH37502).IEEE,2003:609-615. [28]BAKER R S,ROLL I,CORBETT A T,et al.Do performancegoals lead students to game the system? [C]//International Conference on Artificial Intelligence in Education.2005:57-64. [29]ZADEH A,CHEN M,PORIA S,et al.Tensor fusion network for multimodal sentiment analysis [C]//Proceedings of the 2017 Conference on Empirical Methods in Natural Language Proces-sing.2017:1103-1114. [30]HOCHREITER S,SCHMIDHUBER J.Long short-term memory [J].Neural Computation,1997,9(8):1735-1780. [31]CHO K,VAN MERRIENBOER B,GULCEHRE C,et al.Learning phrase representations using RNN encoder-decoder for statistical machine translation [C]//Proceedings of the 2014 Conference on Empirical Methods in Natural Language Proces-sing(EMNLP).2014:1724-1734. [32]LOFTUS G R.Evaluating forgetting curves [J].Journal of Experimental Psychology:Learning,Memory,and Cognition,1985,11(2):397-406. [33]WANG M,ZHENG D,YE Z,et al.Deep Graph Library:AGraph-Centric,Highly-Performant Package for Graph Neural Networks [J].arXiv:1909.01315,2019. [34]GLOROT X,BENGIO Y.Understanding the difficulty of trai-ning deep feedforward neural networks [C]//Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics.JMLR Workshop and Conference Proceedings,2010:249-256. [35]YEUNG C K,YEUNG D Y.Addressing two problems in deep knowledge tracing via prediction-consistent regularization [C]//Proceedings of the Fifth Annual ACM Conference on Learning at Scale.2018:1-10. |
|