计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 260-267.doi: 10.11896/jsjkx.240100195

• 人工智能 • 上一篇    下一篇

一种基于直接反馈对齐的精确脉冲时间学习规则

宁黎苗1, 王自铭2, 林志诚1, 彭舰1, 唐华锦2   

  1. 1 四川大学计算机学院 成都 610065
    2 浙江大学计算机科学与技术学院 杭州 310027
  • 收稿日期:2024-01-29 修回日期:2024-04-07 出版日期:2025-03-15 发布日期:2025-03-07
  • 通讯作者: 唐华锦(htang@zju.edu.cn)
  • 作者简介:(nlm@scu.edu.cn)

Learning Rule with Precise Spike Timing Based on Direct Feedback Alignment

NING Limiao1, WANG Ziming2, LIN Zhicheng1, PENG Jian1, TANG Huajin2   

  1. 1 College of Computer Science,Sichuan University,Chengdu 610065,China
    2 School of Computer Science and Technology,Zhejiang University,Hangzhou 310027,China
  • Received:2024-01-29 Revised:2024-04-07 Online:2025-03-15 Published:2025-03-07
  • About author:NING Limiao,boin in 1985,Ph.D,lecturer,is a member of CCF(No.A1425G).His main research interests include neuromorphic computing and IoT.
    TANG Huajin,Ph.D,professor,Ph.D supervisor.His main research interests include neuromorphic computing,neu-romorphic hardware,cognitive systems and robotic cognition.

摘要: 由于脉冲神经元和突触复杂的时空动力学特性,训练脉冲神经网络比较困难,目前尚不存在公认的核心训练算法与技术。为此,提出一种基于直接反馈对齐(DFA)的精确脉冲时间(PREST-DFA)学习规则。受脉冲分层误差再分配(SLAYER)学习算法的启发,PREST-DFA使用基于脉冲卷积差的误差信号,输出层通过迭代方式计算出误差值,利用基于DFA的误差传输机制,将误差广播至隐藏层神经元,最后实现突触权值更新。仿真实验表明,实现了时间驱动的PREST-DFA学习算法具有精确脉冲时间学习能力。根据文献查询结果,这是首次验证基于DFA机制的学习算法可以在深层网络中控制脉冲的精确发放时间,说明DFA机制可以应用于基于脉冲时间的算法设计。另外还进行了学习性能和训练速度的比较,实验结果表明PREST-DFA能在较低的推理延迟下实现良好的学习性能,与采用相同学习规则使用反向传播训练的学习算法相比,能够加快训练速度。

关键词: 脉冲神经网络, 直接反馈对齐, 学习规则, 精确脉冲时间, 在线学习

Abstract: Due to the complex spatiotemporal dynamics of spike neurons and synapses,training spike neural networks(SNNs) is relatively challenging,and there are currently no widely accepted core training algorithms and techniques.In this paper,we propose a learning rule with precise spike timing based on direct feedback alignment(PREST-DFA).Inspired by the learning algorithm called spike layer error reassignment(SLAYER),PREST-DFA uses error signals based on spike convolution differences.The output layer iteratively calculates the error values,and utilizes direct feedback alignment(DFA) to broadcast the error to hidden layer neurons,finally achieving synaptic weights update.We implement time-driven PREST-DFA,and simulation experiments demonstrate that PREST-DFA has precise spike timing learning capabilities and good biological plausibility.Based on literature search results,this is the first time to verify that learning algorithm based on DFA can control the precise fire time of spikes in deep networks,indicating that the DFA mechanism can be applied to algorithm design based on spike timing.We also compare learning performance and training speed.Experimental results show that PREST-DFA can achieve good learning performance with lower inference latency and can accelerate training speed compared to learning algorithms trained using backpropagation with the same learning rule.

Key words: Spiking neural network, Direct feedback alignment, Learning rule, Precise spike timing, Online learning

中图分类号: 

  • TP181
[1]LIAN S,SHEN J,LIU Q,et al.Learnable Surrogate Gradient for Direct Training Spiking Neural Networks[C]//International Joint Conferences on Artificial Intelligence Organization.2023.
[2]WU Y,DENG L,LI G,et al.Spatio-Temporal Backpropagation for Training High-Performance Spiking Neural Networks [J].Frontiers in Neuroscience,2018,12:331.
[3]HAN J,WANG Z,SHEN J,et al.Symmetric-threshold ReLU for Fast and Nearly Lossless ANN-SNN Conversion [J].Machine Intelligence Research,2023,20(3):435-446.
[4]BU T,DING J H,YU Z F,et al.Optimized Potential Initialization for Low-Latency Spiking Neural Networks [J].arXiv:2202.01440,2022.
[5]NING L,DONG J,XIAO R,et al.Event-driven spiking neural networks with spike-based learning [J].Memetic Computing,2023,15(2):205-217.
[6]LIU F,ZHAO W,CHEN Y,et al.SSTDP:Supervised SpikeTiming Dependent Plasticity for Efficient Spiking Neural Network Training [J].Frontiers in Neuroscience,2021,15:756876.
[7]SHRESTHA S B,ORCHARD G.SLAYER:Spike Layer Error Reassignment in Time[C]//proceedings of the NeurIPS.2018.
[8]LILLICRAP T P,COWNDEN D,TWEED D B,et al.Random synaptic feedback weights support error backpropagation for deep learning [J].Nature Communications,2016,7:13276.
[9]LILLICRAP T P,SANTORO A,MARRIS L,et al.Backpropagation and the brain [J].Nature Reviews Neuroscience,2020,21(6):335-346.
[10]NØKLAND A.Direct Feedback Alignment Provides Learning in Deep Neural Networks[C]//Proceedings of the NIPS.2016.
[11]LAUNAY J,POLI I,BONIFACE F C,et al.Direct FeedbackAlignment Scales to Modern Deep Learning Tasks and Architectures[C]//Proceedings of the NeurIPS.2020.
[12]NEFTCI E O,AUGUSTINE C,PAUL S,et al.Event-DrivenRandom Back-Propagation:Enabling Neuromorphic Deep Learning Machines [J].Frontiers in Neuroscience,2017,11:324.
[13]ZHAO D,ZENG Y,ZHANG T,et al.GLSNN:A Multi-Layer Spiking Neural Network Based on Global Feedback Alignment and Local STDP Plasticity [J].Frontiers Computational Neuroscience,2020,14:576841.
[14]LEE J,ZHANG R,ZHANG W,et al.Spike-Train Level Direct Feedback Alignment:Sidestepping Backpropagation for On-Chip Training of Spiking Neural Nets [J].Frontiers in Neuroscience,2020,14:143.
[15]SHI C,WANG T,HE J,et al.DeepTempo:A Hardware-Friend-ly Direct Feedback Alignment Multi-Layer Tempotron Learning Rule for Deep Spiking Neural Networks [J].IEEE Transactions on Circuits and Systems II:Express Briefs,2021,68(5):1581-1585.
[16]KANG W M,KWON D,WOO S Y,et al.Hardware-Based Spiking Neural Network Using a TFT-Type AND Flash Memory Array Architecture Based on Direct Feedback Alignment [J].IEEE Access,2021,9:73121-73132.
[17]BANG S,LEW D,CHOI S,et al.An Energy-Efficient SNN Processor Design based on Sparse Direct Feedback and Spike Prediction[C]//Proceedings of the 2021 International Joint Confe-rence on Neural Networks (IJCNN).2021.
[18]TAVANAEI A,MAIDA A.BP-STDP:Approximating back-propagation using spike timing dependent plasticity [J].Neurocomputing,2019,330:39-47.
[19]FANG W,YU Z,CHEN Y,et al.Deep Residual Learning in Spiking Neural Networks[C]//Proceedings of the Advances in Neural Information Processing Systems.2021.
[20]FANG W,YU Z,CHEN Y,et al.Incorporating Learnable Membrane Time Constant To Enhance Learning of Spiking Neural Networks[C]//Proceedings of the ICCV.2021.
[21]KAISER J,FRIEDRICH A,TIECK J C V,et al.Embodied Neuromorphic Vision with Event-Driven Random Backpropagation [J].arXiv1904,04805,2019.
[22]XU Q,QI Y,YU H,et al.CSNN:An Augmented Spiking based Framework with Perceptron-Inception[C]//Proceedings of the IJCAI.2018.
[23]DING J,YU Z,TIAN Y,et al.Optimal ANN-SNN Conversion for Fast and Accurate Inference in Deep Spiking Neural Networks[C]//Proceedings of the IJCAI-21.2021.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!