计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 287-294.doi: 10.11896/jsjkx.240700156
宋宝燕, 刘杭生, 单晓欢, 李素, 陈泽
SONG Baoyan, LIU Hangsheng, SHAN Xiaohuan, LI Su, CHEN Ze
摘要: 近年来,知识图谱嵌入(Knowledge Graph Embedding,KGE)作为一种主流方法在知识图谱补全任务中已取得显著效果。然而,现有KGE方法仅在数据层考虑三元组信息,忽略了不同三元组间在逻辑层存在的关系模式语义,导致现有方法仍存在一定性能缺陷。针对上述问题,提出一种融合关系模式和类比迁移的知识图谱补全方法(Fusing Relational-pattern and Ana-logy Transfer,RpAT)。首先,在逻辑层,根据实体关系的语义层次结构,细分为不同的关系模式;其次,在数据层,提出一种模式类比对象生成方法,该方法利用关系模式性质生成目标三元组相似类比对象,依据类比对象对缺失信息进行迁移;最后,提出一种融合了原始知识图谱嵌入模型的推理能力与类比迁移能力的综合性评分函数,以提升图谱补全性能。实验结果表明,在FB15k-237和WN18RR数据集上,相较于其他基线模型,RpAT方法的MRR值分别提升了15.5%和1.8%,验证了在知识图谱补全任务中的有效性。
中图分类号:
[1]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250. [2]MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41. [3]YANG L,CHEN H,LI Z,et al.Give us the facts:Enhancinglarge language models with knowledge graphs for fact-aware language modeling[J].IEEE Transactions on Knowledge and Data Engineering,2024,36,(7):3091-3110. [4]XUN T Y,LIU X H,ZHAO W D.Knowledge Graph and User Interest Based Recommendation Algorithm[J].Chinese Journal of Computer Science,2024,51(2):55-62. [5]QU X,GU Y,XIA Q,et al.A survey on arabic named entity recognition:Past,recent advances,and future trends[J].IEEE Transactions on Knowledge and Data Engineering,2023,36(3):943-959. [6]CAO J,FANG J,MENG Z,et al.Knowledge graph embedding:A survey from the perspective of representation spaces[J].ACM Computing Surveys,2024,56(6):1-42. [7]ZHANG T C,SUN X H,SUN X H,et al.Overview on Know-ledge Graph Embedding Technology Research [J].Journal of Software,2023,34(1):277-311. [8]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2013:2787-2795. [9]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graphembedding by relational rotation in complex space[C]//ICLR.2019. [10]ZHANG Z,CAI J,ZHANG Y,et al.Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:3065-3072. [11]SONG T,LUO J,HUANG L.Rot-pro:Modeling transitivity by projection in knowledge graph embedding[J].Advances in Neural Information Processing Systems,2021,34:24695-24706. [12]CHAO L,HE J,WANG T,et al.Pairre:Knowledge graph embeddings via paired relation vectors[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2020:4360-4369. [13]LI R,CAO Y,ZHU Q,et al.How does knowledge graph embedding extrapolate to unseen data:a semantic evidence view[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:5781-5791. [14]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference,ESWC 2018,Heraklion,Crete,Greece,June 3-7,2018,Proceedings 15.Springer International Publishing,2018:593-607. [15]VASHISHTH S,SANYAL S,NITIN V,et al.Composition-based multi-relational graph convolutional networks[C]//ICLR.2020. [16]NIU G,LI B,ZHANG Y,et al.CAKE:A scalable common-sense-aware framework for multi-view knowledge graph completion[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:2867-2877. [17]TANG Z,PEI S,ZHANG Z,et al.Positive-unlabeled learningwith adversarial data augmentation for knowledge graph completion[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Main Track.2022:2248-2254. [18]WANG H,DAI S,SU W,et al.Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Main Track.2022:2755-2761. [19]JIN L,YAO Z,CHEN M,et al.A Comprehensive Study onKnowledge Graph Embedding over Relational Patterns Based on Rule Learning[C]//International Semantic Web Conference.Cham:Springer Nature Switzerland,2023:290-308. [20]LIU H,WU Y,YANG Y.Analogical inference for multi-relational embeddings[C]//International Conference on Machine Learning.PMLR,2017:2168-2178. [21]YAO Z,ZHANG W,CHEN M,et al.Analogical inference enhanced knowledge graph embedding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:4801-4808. [22]KHANDELWAL U,LEVY O,JURAFSKY D,et al.Generalization through memorization:Nearest neighbor language models[C]//ICLR.2020. [23]LAJUS J,GALÁRRAGA L,SUCHANEK F.Fast and exactrule mining with AMIE 3[C]//The Semantic Web:17th International Conference,ESWC 2020,Heraklion,Crete,Greece,May 31-June 4,2020,Proceedings 17.Springer International Publi-shing,2020:36-52. |
|