计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 287-294.doi: 10.11896/jsjkx.240700156

• 人工智能 • 上一篇    下一篇

融合关系模式和类比迁移的知识图谱补全方法

宋宝燕, 刘杭生, 单晓欢, 李素, 陈泽   

  1. 辽宁大学信息学部 沈阳 110036
  • 收稿日期:2024-07-24 修回日期:2024-10-14 出版日期:2025-03-15 发布日期:2025-03-07
  • 通讯作者: 陈泽(chenz1996@outlook.com)
  • 作者简介:(bysong@lnu.edu.cn)
  • 基金资助:
    辽宁省公共舆情与网络安全信息系统重点实验室(d252453002);辽宁省应用基础研究计划(2022JH2/101300250);教育部产学合作协同育人项目(230701160261310);国家重点研发计划(2023YFC3304900);辽宁省教育厅高校基本科研项目(理工类)面上项目(揭榜挂帅服务地方项目)(JYTMS20230761);辽宁省自然科学基金项目博士启动项目(2023-BS-085)

Joint Relational Patterns and Analogy Transfer Knowledge Graph Completion Method

SONG Baoyan, LIU Hangsheng, SHAN Xiaohuan, LI Su, CHEN Ze   

  1. Faculty of Information,Liaoning University,Shenyang 110036,China
  • Received:2024-07-24 Revised:2024-10-14 Online:2025-03-15 Published:2025-03-07
  • About author:SONG Baoyan,born in 1965,Ph.D,professor.Her main research interests include data stream processing and graph data processing.
    CHEN Ze,born in 1996,Ph.D candidate.His main research interests include graph data processing and natural language processing.
  • Supported by:
    Liaoning Provincial Key Laboratory of Public Opinion and Network Security Information System(d252453002), Applied Basic Research Program of Liaoning Province(2022JH2/101300250),Ministry of Education University-Industry Collaborative Education Program(230701160261310),National Key R&D Program of China(2023YFC3304900), General Program of University Basic Scientific Research of Education Department of Liaoning Province(Science and Engineering)(Initiating Flagship Service for Local Projects)(JYTMS20230761) and Nature Science Foundation Program Doctoral Startup Project of Liaoning Province (2023-BS-085).

摘要: 近年来,知识图谱嵌入(Knowledge Graph Embedding,KGE)作为一种主流方法在知识图谱补全任务中已取得显著效果。然而,现有KGE方法仅在数据层考虑三元组信息,忽略了不同三元组间在逻辑层存在的关系模式语义,导致现有方法仍存在一定性能缺陷。针对上述问题,提出一种融合关系模式和类比迁移的知识图谱补全方法(Fusing Relational-pattern and Ana-logy Transfer,RpAT)。首先,在逻辑层,根据实体关系的语义层次结构,细分为不同的关系模式;其次,在数据层,提出一种模式类比对象生成方法,该方法利用关系模式性质生成目标三元组相似类比对象,依据类比对象对缺失信息进行迁移;最后,提出一种融合了原始知识图谱嵌入模型的推理能力与类比迁移能力的综合性评分函数,以提升图谱补全性能。实验结果表明,在FB15k-237和WN18RR数据集上,相较于其他基线模型,RpAT方法的MRR值分别提升了15.5%和1.8%,验证了在知识图谱补全任务中的有效性。

关键词: 知识图谱, 知识图谱补全, 关系模式, 类比对象, 类比迁移

Abstract: In recent years,knowledge graph embedding(KGE) has emerged as a mainstream approach and achieved significant results in the task of knowledge graph completion.However,existing KGE methods only consider the information of triplets at the data level,neglecting the semantic relational patterns that exist between different triplets at the logical level,leading to certain performance deficiencies in current methods.To address this issue,a knowledge graph completion method(RpAT) that integrates relational patterns and analogy transfer is proposed.Firstly,at the logical level,different relational patterns are refined according to the semantic hierarchy of entity relationships.Secondly,at the data level,a method for generating pattern analogy objects is proposed,which utilizes the properties of relational patterns to generate similar analogy objects for target triplets and transfers missing information based on these analogy objects.Finally,a comprehensive scoring function that integrates the reasoning capabilities of the original knowledge graph embedding model and the analogy transfer capabilities is proposed to enhance the performance of graph completion.Experimental results show that,compared to other baseline models,the RpAT method pimproves the MRR values by 15.5% and 1.8% on the FB15k-237 and WN18RR datasets,respectively,demonstrating its effectiveness in the task of knowledge graph completion.

Key words: Knowledge graph, Knowledge graph completion, Relational patterns, Analogy objects, Analogy transfer

中图分类号: 

  • TP182
[1]BOLLACKER K,EVANS C,PARITOSH P,et al.Freebase:a collaboratively created graph database for structuring human knowledge[C]//Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data.2008:1247-1250.
[2]MILLER G A.WordNet:a lexical database for English[J].Communications of the ACM,1995,38(11):39-41.
[3]YANG L,CHEN H,LI Z,et al.Give us the facts:Enhancinglarge language models with knowledge graphs for fact-aware language modeling[J].IEEE Transactions on Knowledge and Data Engineering,2024,36,(7):3091-3110.
[4]XUN T Y,LIU X H,ZHAO W D.Knowledge Graph and User Interest Based Recommendation Algorithm[J].Chinese Journal of Computer Science,2024,51(2):55-62.
[5]QU X,GU Y,XIA Q,et al.A survey on arabic named entity recognition:Past,recent advances,and future trends[J].IEEE Transactions on Knowledge and Data Engineering,2023,36(3):943-959.
[6]CAO J,FANG J,MENG Z,et al.Knowledge graph embedding:A survey from the perspective of representation spaces[J].ACM Computing Surveys,2024,56(6):1-42.
[7]ZHANG T C,SUN X H,SUN X H,et al.Overview on Know-ledge Graph Embedding Technology Research [J].Journal of Software,2023,34(1):277-311.
[8]BORDES A,USUNIER N,GARCIA-DURAN A,et al.Translating embeddings for modeling multi-relational data[C]//Advances in Neural Information Processing Systems.Cambridge,MA:MIT Press,2013:2787-2795.
[9]SUN Z,DENG Z H,NIE J Y,et al.Rotate:Knowledge graphembedding by relational rotation in complex space[C]//ICLR.2019.
[10]ZHANG Z,CAI J,ZHANG Y,et al.Learning hierarchy-aware knowledge graph embeddings for link prediction[C]//Procee-dings of the AAAI Conference on Artificial Intelligence.2020:3065-3072.
[11]SONG T,LUO J,HUANG L.Rot-pro:Modeling transitivity by projection in knowledge graph embedding[J].Advances in Neural Information Processing Systems,2021,34:24695-24706.
[12]CHAO L,HE J,WANG T,et al.Pairre:Knowledge graph embeddings via paired relation vectors[C]//Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing.2020:4360-4369.
[13]LI R,CAO Y,ZHU Q,et al.How does knowledge graph embedding extrapolate to unseen data:a semantic evidence view[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2022:5781-5791.
[14]SCHLICHTKRULL M,KIPF T N,BLOEM P,et al.Modeling relational data with graph convolutional networks[C]//The Semantic Web:15th International Conference,ESWC 2018,Heraklion,Crete,Greece,June 3-7,2018,Proceedings 15.Springer International Publishing,2018:593-607.
[15]VASHISHTH S,SANYAL S,NITIN V,et al.Composition-based multi-relational graph convolutional networks[C]//ICLR.2020.
[16]NIU G,LI B,ZHANG Y,et al.CAKE:A scalable common-sense-aware framework for multi-view knowledge graph completion[C]//Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics.2022:2867-2877.
[17]TANG Z,PEI S,ZHANG Z,et al.Positive-unlabeled learningwith adversarial data augmentation for knowledge graph completion[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Main Track.2022:2248-2254.
[18]WANG H,DAI S,SU W,et al.Simple and Effective Relation-based Embedding Propagation for Knowledge Representation Learning[C]//Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence Main Track.2022:2755-2761.
[19]JIN L,YAO Z,CHEN M,et al.A Comprehensive Study onKnowledge Graph Embedding over Relational Patterns Based on Rule Learning[C]//International Semantic Web Conference.Cham:Springer Nature Switzerland,2023:290-308.
[20]LIU H,WU Y,YANG Y.Analogical inference for multi-relational embeddings[C]//International Conference on Machine Learning.PMLR,2017:2168-2178.
[21]YAO Z,ZHANG W,CHEN M,et al.Analogical inference enhanced knowledge graph embedding[C]//Proceedings of the AAAI Conference on Artificial Intelligence.2023:4801-4808.
[22]KHANDELWAL U,LEVY O,JURAFSKY D,et al.Generalization through memorization:Nearest neighbor language models[C]//ICLR.2020.
[23]LAJUS J,GALÁRRAGA L,SUCHANEK F.Fast and exactrule mining with AMIE 3[C]//The Semantic Web:17th International Conference,ESWC 2020,Heraklion,Crete,Greece,May 31-June 4,2020,Proceedings 17.Springer International Publi-shing,2020:36-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!