计算机科学 ›› 2025, Vol. 52 ›› Issue (3): 318-325.doi: 10.11896/jsjkx.240700203

• 计算机网络 • 上一篇    下一篇

基于BTMA的LoRa网络隐藏终端MAC协议研究

汪浩1, 蔡宇航2, 陈国杰2, 王璐2   

  1. 1 武汉大学计算机学院 武汉 430072
    2 深圳大学计算机与软件学院 广东 深圳 518060
  • 收稿日期:2024-07-31 修回日期:2024-10-28 出版日期:2025-03-15 发布日期:2025-03-07
  • 通讯作者: 王璐(wanglu@szu.edu.cn)
  • 作者简介:(hao_wang@whu.edu.cn)

Study on MAC Protocol of LoRa Network Hidden Terminal Based on BTMA

WANG Hao1, CAI Yuhang2, CHEN Guojie2, WANG Lu2   

  1. 1 School of Computer Science,Wuhan University,Wuhan 430072,China
    2 College of Computer Science and Software Engineering,Shenzhen University,Shenzhen,Guangdong 518060,China
  • Received:2024-07-31 Revised:2024-10-28 Online:2025-03-15 Published:2025-03-07
  • About author:WANG Hao,born in 1997,Ph.D.His main research interest is narrowband IoT communication.
    WANG Lu,born in 1986,Ph.D,asso-ciate professor.Her main research interests include wireless comunication and mobile computing.

摘要: 低功耗广域网(Low Power Wide Area Network,LPWAN)技术的出现,能够在保证更远距离的通信传输的同时,最大限度地降低功耗,节约传输成本。LoRa(Long Range)技术作为其中的佼佼者,凭借其远距离、低功耗、大容量、强抗干扰、高接收灵敏度的特点,备受工业界和学术界的青睐。针对目前工业中主流使用的基于ALOHA的LoRaWAN协议无法很好地解决海量终端设备接入LoRa网络后所带来的严重数据包冲突以及LoRa CAD(Channel Activity Detection)功能带来的隐藏终端问题,提出了一种基于BTMA(Busy Tone Multiple Access)的LoRa网络MAC协议——BT-MAC协议。该协议利用了LoRa高接收灵敏度的特性,网关利用“忙音”信标来通知各个节点网关的工作情况,减少了无效包的发送。同时,节点端通过记录有“忙音”信息和本地信息的逻辑信道矩阵,结合最优信道选择算法,选出最优逻辑信道进行发送,降低了端节点上行数据包之间的冲突,有效缓解了LoRa网络中的隐藏终端问题以及阻塞问题。此外,搭建了LoRa网络MAC协议测试平台,并测试了BT-MAC的有效性,完成了室内和室外环境大规模的并发实验和能耗检测实验。实验结果表明,BT-MAC 协议的吞吐量是 LMAC-2 协议的 1.6 倍,是 ALOHA 协议的 5.1 倍;同时其包接收率达到 LMAC-2 协议的 1.53 倍,ALOHA 协议的 17.2 倍;其包接收平均能耗约为 LMAC-2 协议的 64.1%,为 ALOHA 协议的 14.2%。

关键词: LoRa, MAC协议, BTMA, 隐藏终端, CAD

Abstract: The emergence of low power wide area network(LPWAN) technology allows for longer-distance communication while minimizing power consumption and reducing transmission costs.LoRa(long range) technology,as a standout in this field,is highlyfavored in both industrial and academic circles due to its long-range capabilities,low power consumption,high capacity,strong anti-interference,and high reception sensitivity.However,the widely used ALOHA-based LoRaWAN protocol in the industry struggles to effectively address severe data packet collisions resulting from the massive access of terminal devices to the LoRa network,as well as the hidden terminal problem caused by the LoRa CAD(channel activity detection) feature.This paper proposes a BTMA(busy tone multiple access)-based MAC protocol for LoRa networks,known as the BT-MAC protocol.This protocol leverages LoRa’s high reception sensitivity,with the gateway using “busy tone” beacons to inform each node of the gateway’s operational status,thereby reducing the transmission of invalid packets.Simultaneously,nodes maintain a logical channel matrix with “busy tone” information and local information.By employing an optimal channel selection algorithm,nodes select the best logical channel for transmission,reducing collisions among uplink data packets from end nodes.This effectively mitigates the hidden terminal problem and congestion in LoRa networks.A LoRa network MAC protocol testing platform is built to test the effectiveness of BT-MAC.Extensive concurrent experiments and energy consumption tests are conducted in both indoor and outdoor environments.The experimental results show that the throughput of the BT-MAC protocol is 1.6 times that of the LMAC-2 protocol and 5.1 times that of the ALOHA protocol.Additionally,its packet reception rate is 1.53 times that of the LMAC-2 protocol and 17.2 times that of the ALOHA protocol..The average energy consumption per packet is approximately 64.1% of that of the LMAC-2 protocol and 14.2% of that of the ALOHA protocol.

Key words: LoRa, MAC Protocol, BTMA, Hidden terminal, CAD

中图分类号: 

  • TN092
[1]LI ME L,MA Y Z.Current Situation and Suggestions for the Development of the Internet of Things Industry in China [J].Group Technology & Production Modernization,2021,38(3):42-46.
[2]LAVRIC A,PETRARIU A I,POPA V.Sigfox communication protocol:The new era of iot?[C]//2019 International Confe-rence on Sensing and Instrumentation in IoT Era(ISSI).IEEE,2019:1-4.
[3]SINHA R S,WEI Y,HWANG S H.A survey on LPWA technology:LoRa and NB-IoT[J].ICT Express,2017,3(1):14-21.
[4]VANGELISTA L,ZANELLA A,ZORZI M.Long-range IoTtechnologies:The dawn of LoRaTM[C]//Future Access Enablers for Ubiquitous and Intelligent Infrastructures.Cham:Springer,2015:51-58.
[5]LoRaAlliance.LoRaWAN1.1Specification[S/OL]//BrandinCo-urtFremont:LoRaAlliance,2017:1-101.https://loraalliance.org/resource-hub/lorawanr-specification-v11.
[6]ELETREBY R,ZHANG D,KUMAR S,et al.Empowering low-power wide area networks in urban settings[C]//Proceedings of the Conference of the ACM Special Interest Group on Data Communication.2017:309-321.
[7]DONGARE A,NARAYANAN R,GADRE A,et al.Charm:Exploiting geographical diversity through coherent combining in low-power wide-area networks[C]//2018 17th ACM/IEEE International Conference on Information Processing in Sensor Networks(IPSN).IEEE,2018:60-71.
[8]GADRE A,NARAYANAN R,LUONG A,et al.Frequencyconfiguration for low-power wide-area networks in a heartbeat[C]//Proceedings of the Symposium on Networked Systems Design and Implementation(NSDI).2020:339-352.
[9]VOIGT T,BOR M,ROEDIG U,et al.Mitigating inter-network interference in LoRa networks[J].arXiv:1611.00688,2016.
[10]HOU N N,ZHENG Y Q.CloakLoRa:A covert channel over LoRaPHY[C]//2020 IEEE 28th International Conference on Network Protocols(ICNP).IEEE,2020.
[11]POLONELLI T,BRUNELLI D,BENINI L.Slotted ALOHAoverlay on LoRaWAN:a distributed synchronization approach[C]//2018 IEEE 16th International Conference on Embedded and Ubiquitous Computing(EUC).IEEE,2018:129-132.
[12]LUCA B,AAMIR M,PATRIK Ö,et al.Energy efficiency ofslotted LoRaWAN communication with out-of-band synchronization[J].IIEEE Transactions on Instrumentation and Mea-surement,2021,70:5501211-1-5501211-11.
[13]PIYARE R,MURPHY A L,MAGNO M,et al.On-demand LoRa:Asynchronous TDMA for energy efficient and low latency communication in IoT[J].Sensors,2018,18(11):3718.
[14]RIZZI M,FERRARI P,FLAMMINI A,et al.Using LoRa forindustrial wireless networks[C]//IEEE 13th International Workshop on Factory Communication Systems(WFCS).2017:1-4.
[15]LV W.Research on ALOHA Anti-collision Algorithm and Data Security in LoRa Network [D].Chongqing:Chongqing University of Technology,2018.
[16]PHAM C.Investigating and experimenting CSMA channel access mechanisms for LoRa IoT networks[C]//2018 IEEE Wireless Communications and Networking Conference(WCNC).IEEE,2018:1-6.
[17]GAMAGE A,LIANDO J,GU C,et al.LMAC:Efficient carrier-sense multiple access for LoRa[J].ACM Transactions on Sensor Networks,2023,19(2):1-27.
[18]KOUVELAS N,RAO V S,PRASAD R V,et al.p-CARMA:Politely scaling LoRaWAN[C]//International Conference on Embedded Wireless Systems and Networks.2020:25-36.
[19]XU T,ZHAO M.A LoRaWAN-MAC protocol based on WSN residual energy to adjust duty cycle[C]//IEEE 40th International Conference on Distributed Computing Systems(ICDCS).2020:1415-1420.
[20]SUBBARAMAN R,GUNTUPALLI Y,JAIN S,et al.BSMA:Scalable LoRa networks using full duplex gateways[C]//Proceedings of the 28th Annual International Conference on Mobile Computing and Networking.2022:676-689.
[21]PHAM C,EHSAN M.Dense deployment of LoRa networks:Expectations and limits of channel activity detection and capture effect for radio channel access[J].Sensors,2021,21(3):825.
[22]HAXHIBEQIRI J,VAN DEN ABEELE F,MOERMAN I,et al.LoRa scalability:A simulation model based on interference measurements[J].Sensors,2017,17(6):1193.
[23]TAPPAREL J,AFISIADIS O,MAYORAZ P,et al.An open-source LoRa physical layer prototype on GNU radio[C]//2020 IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications(SPAWC).IEEE,2020:1-5.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!