计算机科学 ›› 2025, Vol. 52 ›› Issue (4): 54-63.doi: 10.11896/jsjkx.241000102
郑秀宝, 李静, 祝铭, 宁莹莹
ZHENG Xiubao, LI Jing, ZHU Ming, NING Yingying
摘要: 随着信息技术和制造技术的深度融合,云制造工业生产已成为制造业的关键部分。云制造环境的动态性和服务资源间的相互依赖关系,使得选择最佳工业资源服务变得困难。现有的选择优化方法大多基于启发式算法,但这些算法往往缺乏对云制造环境的自适应能力。因此,文中构建了一种云制造环境下的服务选择模型,提出了一种基于深度学习和生成对抗网络思想的服务选择算法,该模型能够灵活适应环境变化,利用图表示学习方法构建任务服务约束图,根据任务、服务和工业生产约束之间的内在联系学习资源服务特征,在算法改进阶段引入梯度优化和损失函数策略,选择最佳工业资源服务。实验结果表明,所提算法相较于其他对比算法表现出了更强的性能优势。
中图分类号:
[1]TAO F,HU Y F,ZHOU Z D.Study on manufacturing grid &its resource service optimal-selection system[J].The International Journal of Advanced Manufacturing Technology,2008,37:1022-1041. [2] ZHANG L,LUO Y,TAO F,et al.Cloud manufacturing:a new manufacturing paradigm[J].Enterprise Information Systems,2014,8(2):167-187. [3]HANNA A C,WHITING J,HUANG B,et al.Heuristic algorithms for design of integrated monitoring of geologic carbon storage sites[J].International Journal of Greenhouse Gas Control,2024,135:104157. [4] BAHGA T,MOHAMED S M,SEBAQ A M.An Analytical Computational Algorithm for Solving a System of Multipantograph DDEs Using Laplace Variational Iteration Algorithm [J].Advances in Astronomy,2021,1:7741166. [5] XIAO Y,GU Z,ZHANG Q,et al.New semi-analytical algorithm for solving PKEs based on Euler-Maclaurin approximation [J].Annals of Nuclear Energy,2020,141:107308-107308. [6]ZHANG H,WU X J,WANG J.Study on the Evaluation Theoretical Structure Building of Deep Learning[J].China Educational Technology,2014,7:51-55. [7]CHEN E,ANDERSEN S M,CHANDRA R.Deep learningframework with Bayesian data imputation for modelling and forecasting groundwater levels [J].Environmental Modelling and Software,2024,178:106072. [8]CHU N,NG K K H,LIU Y,et al.Assessment of approach separation with probabilistic aircraft wake vortex recognition via deep learning[J].Transportation Research Part E:Logistics and Transportation Review,2024,181:103387. [9]LI H,TONG J,ZHANG Z,et al.Selection of resource service chain with conflict-free dependencies in cloud manufacturing systems[J].International Journal of Internet Manufacturing and Services,2020,7(3):216-236. [10]ZHANG Q,LI S,PU R,et al.An adaptive robust service composition and optimal selection method for cloud manufacturing based on the enhanced multi-objective artificial hummingbird algorithm[J].Expert Systems with Applications,2024,244:122823. [11]YANG B,WANG S,LI S,et al.A robust service compositionand optimal selection method for cloud manufacturing[J].International Journal of Production Research,2022,60(4):1134-1152. [12]SUTTON R S,BARTO A G.Reinforcement learning:An introduction[J].Robotica,1999,17(2):229-235. [13]TESAURO G.TD-Gammon,a self-teaching backgammon program,achieves master-level play[J].Neural computation,1994,6(2):215-219. [14]DE BLASI S,KLÖSER S,MÜLLER A,et al.KIcker:an industrial drive and control foosball system automated with deep reinforcement learning[J].Journal of Intelligent & Robotic Systems,2021,102(1):20. [15]LIU Y,YAO J,LIN T,et al.A framework for industrial robot training in cloud manufacturing with deep reinforcement lear-ning[C]//International Manufacturing Science and Engineering Conference.American Society of Mechanical Engineers,2020 [16]MA Y,XU W,TIAN S,et al.Knowledge graph-based manufacturing capability service optimal selection for industrial cloud robotics[C]//International Manufacturing Science and Enginee-ring Conference.American Society of Mechanical Engineers,2020. [17]DU H,XU W,YAO B,et al.Collaborative optimization of service scheduling for industrial cloud robotics based on knowledge sharing[J].Procedia CIRP,2019,83:132-138. [18]GUO X,SHI L,CHEN X,et al.TAI-GAN:A Temporally and Anatomically Informed Generative Adversarial Network for early-to-late frame conversion in dynamic cardiac PET inter-frame motion correction[J].Medical Image Analysis,2024:96:103190. [19] WANG R.Research on communication user churn predictionmodel based on GAN [D].Jiangxi:Jiangxi Normal University,2023. [20]NIU L,LI Z,LI S.MMD Fence GAN Unsupervised Anomaly Detection Model Based on Maximum Mean Discrepancy[J].International Journal of Cognitive Informatics and Natural Intelligence,2024,18(1):1-13. [21] CUI F,GENG N,JIANG Z B,et al.Research on Joint Optimization of Reconfigurable Manufacturing Flow Line Configuration and Production Planning under Uncertain Demand[J].Frontier of Engineering Management Technology,2024,43(2):29-37. [22]SAATY L T.Correction to:Some mathematical concepts of the analytic hierarchy process [J].Behaviormetrika,2021,48(1):1-2. [23]HUANG J J,CHEN Y C.Resource Allocation of CooperativeAlternatives Using the Analytic Hierarchy Process and Analytic Network Process with Shapley Values [J].Algorithms,2024,17(4):152. [24]AUGUSTINAS M,ANDREJ B,REGINA O ,et al.Decision Tree and AHP Methods Application for Projects Assessment:A Case Study [J].Sustainability,2021,13(10):5502-5502. [25]WU H,CAI X,FENG M.Risk management of engineering projects installation using analytic hierarchy process [J].Infrastructure Asset Management,2024,3:1-39. [26]ARıCAN H O,KARA E G E.Selection model of chemical tan-ker ships for cargo types using fuzzy AHP and fuzzy TOPSIS [J].Regional Studies in Marine Science,2024,78:103724-103724. [27] CAO Y,WANG S,KANG L,et al.A TQCS-based service selection and scheduling strategy in cloud manufacturing [J].The International Journal of Advanced Manufacturing Technology,2016,82(1/2/3/4):235-251. [28]WEI Y,DENG Y,SUN C,et al.Deep learning with noisy labels in medical prediction problems:a scoping review[J].Journal of the American Medical Informatics Association,2024,31(7):1596-1607. [29]KISHORE A,KUMAR A,DANG N.Enhanced Image Restoration by GANs using Game Theory [J].Procedia Computer Science,2020,173(C):225-233. [30]XU K,HU W,LESKOVEC J,et al.How powerful are graphneural networks?[J].arXiv:1810.00826,2018. [31] KUMAR S G,JATOTH C,GANGADHARAN G,et al.QoS-aware cloud service composition using eagle strategy [J].Future Generation Computer Systems,2018,90:273-290. [32] ZHANG Z,XU X,GAO F,et al.An adaptive approach to manufacturing service portfolio based on dynamic matching network[J].Journal of Software,2018,29:3355-3373. [33] WANG X,XU H,WANG X,et al.A graph neural network and pointer network-based approach for QoS-aware service composition[J].IEEE Transactions on Services Computing,2022,16(3):1589-1603. [34]WANG H,LI J,YU Q,et al.Integrating recurrent neural networks and reinforcement learning for dynamic service composition[J].Future Generation Computer Systems,2020,107:551-563. [35]JIA W,CHEN S,YANG L,et al.Ankylosing spondylitis prediction using fuzzy K-nearest neighbor classifier assisted by modified JAYA optimizer[J].Computers in Biology and Medicine,2024,175:108440. [36]MONGE J J,PARKER W J,RICHARDSON J W.Integratingforest ecosystem services into the farming landscape:a stochastic economic assessment[J].Journal of Environmental Management,2016,174:87-99. [37] FREIBOTT C R,GERBOLÉS C G C,SÁNCHEZ G A,et al.MILP and PSO approaches for solving a hydropower reservoirs intraday economic optimization problem[J/OL].https://link.springer.com/article/10.1007/s10100-024-00934-z. |
|